SimElectronics ${ }^{\circledR}$

Reference

R2013b

MATLABㄹ\&SIMULINK ${ }^{\circ}$

How to Contact MathWorks

www. mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SimElectronics ${ }^{\circledR}$ Reference

© COPYRIGHT 2008-2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

April 2008	Online only
October 2008	Online only
March 2009	Online only
September 2009	Online only
March 2010	Online only
September 2010	Online only
April 2011	Online only
September 2011	Online only
March 2012	Online only
September 2012	Online only
March 2013	Online only
September 2013	Online only

April 2008
October 2008
September 2009 March 2010
September 2010
April 2011
September 2011
March 2012
March 2013
September 2013 Online only

New for Version 1.0 (Release 2008a+) Revised for Version 1.1 (Release 2008b) Revised for Version 1.2 (Release 2009a)
Revised for Version 1.3 (Release 2009b)
Revised for Version 1.4 (Release 2010a)
Revised for Version 1.5 (Release 2010b)
Revised for Version 1.6 (Release 2011a)
Revised for Version 2.0 (Release 2011b)
Revised for Version 2.1 (Release 2012a)
Revised for Version 2.2 (Release 2012b)
Revised for Version 2.3 (Release 2013a)
Revised for Version 2.4 (Release 2013b)

Blocks - Alphabetical List

Index

Blocks - Alphabetical List

Accelerometer

Purpose Behavioral model of MEMS accelerometer
 Library
 Sensors

Description

The Accelerometer block implements a behavioral model of a MicroElectroMechanical Systems (MEMS) accelerometer. For the default output type Voltage level, the accelerometer provides an output voltage that is proportional to the acceleration rate presented at the mechanical translational physical port R. The output voltage is limited according to the values that you provide for maximum and minimum output voltage.

The block also has an alternative output type, PWM duty cycle. With this choice, the output of the block is a PWM signal with a duty cycle that is proportional to the measured acceleration. You can limit the variation in duty cycle to a specified range.

Optionally, you can model sensor dynamics by setting the Dynamics parameter to Model sensor bandwidth. Including dynamics adds a first-order lag between the angular rate presented at port R and the corresponding voltage applied to the electrical + and - ports.

If running your simulation with a fixed-step solver, or generating code for hardware-in-the-loop testing, MathWorks recommends that you set the Dynamics parameter to No dynamics Suitable for HIL, because this avoids the need for a small simulation time step if the sensor bandwidth is high.

Accelerometer

Dialog

Box and
Parameters

Block Parameters: Accelerometer

Accelerometer

This block represents an accelerometer. The acceleration at mechanical translational port R is mapped to either a voltage level or the duty cycle of a PWM voltage across the electrical + and - ports.

Parameters

Output type:
Sensitivity:
Output voltage for zero acceleration:

Maximum output voltage:
Minimum output voltage:
Dynamics:

Voltage level

```
1000
```

2.5

4
1
No dynamics - Suitable for HIL

```
mV/gee
```

V
V
V

Output type

Select one of the following options to define the block output type:

- Voltage level - The amplitude of the output voltage is proportional to the measured acceleration. This is the default option.

Accelerometer

- PWM duty cycle - The duty cycle (on time divided by the pulse total time) is proportional to the measured acceleration.

Sensitivity

The change in output voltage level per unit change in acceleration when the output is not being limited. This parameter is only visible when you select Voltage level for the Output type parameter. The default value is $1000 \mathrm{mV} / \mathrm{gee}$.

Output voltage for zero acceleration

The output voltage from the sensor when the acceleration is zero. This parameter is only visible when you select Voltage level for the Output type parameter. The default value is 2.5 V .

Maximum output voltage

The maximum output voltage from the sensor, which determines the sensor maximum measured positive acceleration. This parameter is only visible when you select Voltage level for the Output type parameter. The default value is 4 V .

Minimum output voltage

The minimum output voltage from the sensor, which determines the sensor maximum measured negative acceleration. This parameter is only visible when you select Voltage level for the Output type parameter. The default value is 1 V .

Duty cycle sensitivity (percent per unit acceleration)

The change in duty cycle per unit acceleration. Duty cycle is expressed as a percentage of the PWM period. This parameter is only visible when you select PWM duty cycle for the Output type parameter. The default value is 10 percent/gee.

Duty cycle for zero acceleration (percent)

The duty cycle output by the sensor when the acceleration is zero. This parameter is only visible when you select PWM duty cycle for the Output type parameter. The default value is 50%.

Maximum duty cycle (percent)

The maximum duty cycle output by the sensor. Increasing acceleration levels beyond this point will not register an increase

Accelerometer

in duty cycle. This parameter is only visible when you select PWM duty cycle for the Output type parameter. The default value is 75%.

Minimum duty cycle (percent)

The minimum duty cycle output by the sensor. Decreasing acceleration levels beyond this point will not register a decrease in duty cycle. This parameter is only visible when you select PWM duty cycle for the Output type parameter. The default value is 25%.

PWM frequency

The frequency of the output pulse train. This parameter is only visible when you select PWM duty cycle for the Output type parameter. The default value is 1 kHz .

Output voltage amplitude

The amplitude of the output pulse train when high. This parameter is only visible when you select PWM duty cycle for the Output type parameter. The default value is 5 V .

Dynamics

Select one of the following options for modeling sensor dynamics:

- No dynamics Suitable for HIL - Do not model sensor dynamics. Use this option when running your simulation fixed step or generating code for hardware-in-the-loop testing, because this avoids the need for a small simulation time step if the sensor bandwidth is high. This is the default option.
- Model sensor bandwidth - Model sensor dynamics with a first-order lag approximation, based on the Bandwidth and the Initial angular rate parameter values.

Bandwidth

Specifies the 3dB bandwidth for the measured acceleration assuming a first-order time constant. This parameter is only visible when you select Model sensor bandwidth for the Dynamics parameter. The default value is 3 kHz .

Accelerometer

Initial acceleration

Determines the initial condition for the lag by specifying the initial output for the sensor, expressed in units of acceleration. This parameter is only visible when you select Model sensor bandwidth for the Dynamics parameter. The default value is 0 gee.

Ports

The block has the following ports:
R
Mechanical translational port.
$+$
Positive electrical port.

Negative electrical port.

Purpose

Model band-limited operational amplifier

Library

Description

Integrated Circuits Vm , respectively, the output voltage is:

The Band-Limited Op-Amp block models a band-limited operational amplifier. If the voltages at the positive and negative ports are $V p$ and

$$
V_{\text {out }}=\frac{A\left(V_{p}-V_{m}\right)}{\frac{s}{2 \pi f}+1}-I_{\text {out }} * R_{\text {out }}
$$

where:

- A is the gain.
- $R_{\text {out }}$ is the output resistance.
- $I_{\text {out }}$ is the output current.
- s is the Laplace operator.
- f is the $3-\mathrm{dB}$ bandwidth.

The input current is:

$$
\frac{V_{p}-V_{m}}{R_{i n}}
$$

where $R_{i n}$ is the input resistance.
The block does not use the initial condition you specify using the Initial output voltage, V0 parameter if you select the Start simulation from steady state check box in the Simscape ${ }^{\text {TM }}$ Solver Configuration block.

Band-Limited Op-Amp

Dialog
 Box and Parameters

Gain, A
The open-loop gain of the operational amplifier. The default value is 1000 .

Input resistance, Rin

The resistance at the input of the operational amplifier that the block uses to calculate the input current. The default value is $1 \mathrm{e}+06 \Omega$.

Output resistance, Rout

The resistance at the output of the operational amplifier that the block uses to calculate the drop in output voltage due to the output current. The default value is 100Ω.

Minimum output, Vmin

The lower limit on the operational amplifier no-load output voltage. The default value is -15 V .
Maximum output, Vmax
The upper limit on the operational amplifier no-load output voltage. The default value is 15 V .

Maximum slew rate, Vdot

The maximum positive or negative rate of change of output voltage magnitude. The default value is $1000 \mathrm{~V} / \mathrm{s}$.

Bandwidth, f
The open-loop bandwidth, that is, the frequency at which the gain drops by 3 dB compared to the low-frequency gain, A. The default value is $1 \mathrm{e}+05 \mathrm{~Hz}$.

Initial output voltage, V0

The output voltage at the start of the simulation when the output current is zero. The default value is 0 V .

Note This parameter value does not account for the voltage drop across the output resistor.

Ports The block has the following ports:

Positive electrical voltage.

Band-Limited Op-Amp

Negative electrical voltage.
OUT
Output voltage.

See Also Simscape Op-Amp, Finite-Gain Op-Amp, Fully Differential Op-Amp

CMOS AND

Purpose
 Model CMOS AND gate behaviorally
 Library
 Logic

Description
The CMOS AND block represents a CMOS AND logic gate behaviorally:

- The block output logic level is HIGH if the logic levels of both of the gate inputs are 1.
- The block output logic level is LOW otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1.
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

> Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 1-12 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.
- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that

CMOS AND

the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.
Basic
Assumptions
and
Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

CMOS AND

Dialog Box and Parameters

Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

CMOS AND

Outputs Tab

CMOS AND

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when

CMOS AND

you select the Linear option for the Output current-voltage relationship parameter.

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage

Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R} _\mathrm{OH} 1 \mathrm{R} _\mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $\mathrm{R}_{-} \mathrm{OH} 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I _O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS AND

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R _O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS AND

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

Ports
 The block has the following ports:

A
Electrical input port.
B
Electrical input port.
J
Electrical output port.

CMOS Buffer

Purpose

Model CMOS Buffer gate behaviorally

Library

Logic

The CMOS Buffer block represents a CMOS Buffer logic gate behaviorally:

- The block output logic level is HIGH if the logic level of the gate input is 1 .
- The block output logic level is LOW otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1 .
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 1-20 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.

CMOS Buffer

- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.

Basic
 Assumptions
 and Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

Dialog Box and Parameters

Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

CMOS Buffer

Outputs Tab

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

CMOS Buffer

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage
Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R} _\mathrm{OH} 1 \mathrm{R} _\mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $\mathrm{R} _\mathrm{OH} 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I _O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS Buffer

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R _O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS Buffer

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

The block has the following ports:
A
Electrical input port.
J
Electrical output port.

CMOS NAND

Purpose

Model CMOS NAND gate behaviorally

Library

Logic
Description
 behaviorally:

The CMOS NAND block represents a CMOS NAND logic gate

- The block output logic level is HIGH if the logic levels of both of the gate inputs are 0 .
- The block output logic level is LOW otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1.
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 1-28 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.

CMOS NAND

- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.

Basic Assumptions and Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

CMOS NAND

Dialog Box and Parameters

Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

Outputs Tab

CMOS NAND

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

CMOS NAND

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage
Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R}_{-} \mathrm{OH} 1 \quad \mathrm{R} _\mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $\mathrm{R}_{-} \mathrm{OH} 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I_{-} O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS NAND

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R _O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS NAND

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

Ports The block has the following ports:
A
Electrical input port.
B
Electrical input port.
J
Electrical output port.

CMOS NOR

Purpose
 Library
 Description

Model CMOS NOR gate behaviorally

Logic
The CMOS NOR block represents a CMOS NOR logic gate behaviorally:

- The block output logic level is LOW if the logic levels of any of the gate inputs are 1.
- The block output logic level is HIGH otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1.
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

> Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 1-36 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.
- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that

CMOS NOR

Basic Assumptions and Limitations

the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

CMOS NOR

Dialog Box and Parameters

Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

Outputs Tab

Block Parameters: CMOS NOR								区
CMOS NOR The block implements a simplified model of a CMOS NOR logic gate. Set the Input low, Input high, Output low and Output high parameters for the supply voltage used. Default values are for a supply voltage of 5 volts.								
Parameters								
Inputs	Outputs	Initial Condit						
Output current-voltage relationship:			Linear				\checkmark	
Low level output voltage:			0			V	\square	
High level output voltage:			5				\square	
Output resistance:			25			Ohm	\square	
Propagation delay:			25			ns	\square	
				OK	Cancel	Help	Apply	

CMOS NOR

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

CMOS NOR

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage

Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R}_{-} \mathrm{OH} 1 \quad \mathrm{R} _\mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $\mathrm{R}_{-} \mathrm{OH} 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I _O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R_{-} O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS NOR

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

Ports The block has the following ports:
A
Electrical input port.
B
Electrical input port.
J
Electrical output port.

CMOS NOT

Purpose

Model CMOS NOT gate behaviorally

Library

Logic
Description
 is 0 .

The CMOS NOT block represents a CMOS NOT logic gate behaviorally:

- The block output logic level is HIGH if the logic level of the gate input
- The block output logic level is LOW otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1.
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 1-44 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.

CMOS NOT

Basic Assumptions and Limitations

- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

Dialog Box and Parameters

Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

Outputs Tab

团 Block Parameters: CMOS NOT								x
CMOS NOT The block implements a simplified model of a CMOS NOT logic gate. Set the Input low, Input high, Output low and Output high parameters for the supply voltage used. Default values are for a supply voltage of 5 volts.								
Parameters								
Inputs	Outputs	Initial Condit						
Output current-voltage relationship:			Linear				\checkmark	
Low level output voltage:			0				\checkmark	
High level output voltage:			5				\checkmark	
Output resistance:			25			Ohm	\checkmark	
Propagation delay:			25			ns	\checkmark	
				OK	Cancel	Help	Apply	

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

CMOS NOT

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage

Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R}_{-} \mathrm{OH} 1 \quad \mathrm{R} _\mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $\mathrm{R}_{-} \mathrm{OH} 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I_{-} O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS NOT

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R_{-} O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS NOT

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

Ports The block has the following ports:
A
Electrical input port.
J
Electrical output port.

CMOS OR

Purpose

Model CMOS OR gate behaviorally

Library

Logic
Description

The CMOS OR block represents a CMOS OR logic gate behaviorally:

- The block output logic level is HIGH if the logic levels of any of the gate inputs are 1.
- The block output logic level is LOW otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1.
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 1-52 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.
- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that

CMOS OR

the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.
Basic
Assumptions
and
Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

Dialog Box and Parameters

Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

Outputs Tab

CMOS OR

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

CMOS OR

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage
Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R}_{-} \mathrm{OH} 1 \quad \mathrm{R} _\mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $\mathrm{R}_{-} \mathrm{OH} 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I_{-} O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS OR

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R _O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS OR

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

Ports The block has the following ports:
A
Electrical input port.
B
Electrical input port.
\checkmark
Electrical output port.

CMOS XOR

Purpose

Model CMOS XOR gate behaviorally

Library

Logic
Description D-

The CMOS XOR block represents a CMOS XOR logic gate behaviorally:

- The block output logic level is HIGH if the logic level of exactly one of the gate inputs is 1 .
- The block output logic level is LOW otherwise.

The block determines the logic levels of the gate inputs as follows:

- If the gate voltage is greater than the threshold voltage, the block interprets the input as logic 1 .
- Otherwise, the block interprets the input as logic 0 .

The threshold voltage is the voltage value at midpoint between the High level input voltage parameter value and the Low level input voltage parameter value.

> Note To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. See "Basic Assumptions and Limitations" on page 1-60 for details.

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.
- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that

CMOS XOR

 parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.
Basic
Assumptions
and
Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The block does not accurately model the gate's response to input noise and inputs that are around the logic threshold voltage.
- The block does not accurately model dynamic response.

Circuits that involve a feedback path around a set of logic gates may require a nonzero propagation delay to be set on one or more gates.

Dialog Box and Parameters

Inputs Tab

Low level input voltage

Voltage value below which the block interprets the input voltage as logic LOW. The default value is 2 V .

High level input voltage

Voltage value above which the block interprets the input voltage as logic HIGH. The default value is 3 V .

Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. The MOSFET capacitance depends on the applied voltage. When you drive this block with another gate, the Average input capacitance produces a rise time similar to that of the MOSFET. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero may result in faster simulation times.

Outputs Tab

Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

CMOS XOR

Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is 25Ω. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage
Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [$\mathrm{R}_{-} \mathrm{OH} 1 \quad \mathrm{R} _\mathrm{OH} 2$] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $\mathrm{R}_{-} \mathrm{OH} 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I_{-} O H$. The default value is [25250] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output resistance at zero current and at I_OL

A row vector [$R _O L 1$ R_OL2] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R_{-} O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I _O L$. The default value is [30800] Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is 5Ω. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

CMOS XOR

Initial Conditions Tab

Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

Ports The block has the following ports:
A
Electrical input port.
B
Electrical input port.
J
Electrical output port.

Comparator

Purpose

Model a comparator behaviorally

Library

Integrated Circuits
Description
The Comparator block is an abstracted behavioral model of a comparator integrated circuit. It does not model an internal transistor-level
 implementation. Therefore, the block runs quickly during simulation but retains the correct I/O behavior. The block models differential inputs electrically as having infinite resistance and a finite or zero capacitance.

The block models the gate output as a voltage source driving a series resistor and a capacitor that connects to ground. The output pin connects to the resistor-capacitor connection node. If the difference in the inputs is greater than the input threshold voltage, then the output is equal to the High level output voltage ($V_{O L}$). Otherwise, the output is equal to the Low level output voltage ($V_{O H}$).

The output model is shown in the following illustration.

Comparator

> Basic
> Assumptions and Limitations

> Modeling of the output as a controlled voltage source is representative of a totem-pole or push-pull output stage. To model a device with an open-collector:

> 1 Connect the output pin to the base of an NPN Bipolar Transistor or PNP Bipolar Transistor block.

> 2 Set the Output resistance parameter to a suitable value.

Comparator

Dialog Inputs Tab

Input offset voltage

The voltage which the difference in the input voltages must be greater than so that the comparator gives a logic output 1 . The default value is 5 mV .

Average input capacitance

You can usually find this capacitance value on a manufacturer datasheet. The default value is 0 pF . Setting this value to zero can result in faster simulation times.

Comparator

Outputs Tab

Low level output voltage

The steady-state output voltage, $V_{O L}$, when the voltage difference across the inputs is less than or equal to the threshold voltage, and the output current is zero. The default value is 0 V .

High level output voltage

The steady-state output voltage, $V_{O H}$, when the voltage difference across the inputs is greater than the threshold voltage, and the output current is zero. The default value is 5 V .

Output resistance

This parameter is the ratio of output voltage drop to output current. Set this parameter to $\left(V_{O H}-V_{O H 1}\right) / I_{O H 1}$, where $V_{O H 1}$ is the reduced output high voltage when the output current is $I_{O H 1}$. The default value is 50Ω.

Propagation delay

Set this value based on the high-to-low and low-to-high propagation delays. The default value is 0 s .
Ports This block has the following ports:Positive electrical input port.Negative electrical input port.OUTElectrical output port.
See Also CMOS Buffer .

Controlled PWM Voltage

Purpose Model pulse-width modulated voltage source
 Library
 Drivers

Description

The Controlled PWM Voltage block represents a pulse-width modulated (PWM) voltage source that depends on the reference voltage $V_{\text {ref }}$ across its + ref and -ref ports. The demanded duty cycle is

$$
100 * \frac{V_{\text {ref }}-V_{\min }}{V_{\max }-V_{\min }} \text { percent }
$$

where:

- $V_{\min }$ is the minimum reference voltage
- $V_{\max }$ is the maximum reference voltage

The value of the Output voltage amplitude parameter determines amplitude of the output voltage.
At time zero, the pulse is initialized as high, unless the Pulse delay time parameter is greater than zero, or the demanded duty cycle is zero.
You can use parameters Pulse delay time and Pulse width offset to add a small turn-on delay and a small turn-off advance. This can be useful when fine-tuning switching times so as to minimize switching losses.

In PWM mode, the block has two options for the type of switching event when moving between output high and output low states:

- Asynchronous Best for variable-step solvers Asynchronous events are better suited to variable step solvers, because they require fewer simulation steps for the same level of accuracy. In asynchronous mode the PWM switching events generate zero crossings, and therefore switching times are always determined accurately, regardless of the simulation maximum step size.

Controlled PWM Voltage

Basic
 Assumptions and Limitations

- Discrete time Best for fixed-step solvers - Discrete-time events are better suited to fixed-step operation, because then the switching events are always synchronized with the simulation step. Using an asynchronous implementation with fixed-step solvers may sometimes result in events being up to one simulation step late. For more information, see "Simulating with Fixed Time Step - Local and Global Fixed-Step Solvers".

If you use a fixed-step or local solver and the discrete-time switching event type, the following restrictions apply to the Sample time parameter value:

- The sample time must be a multiple of the simulation step size.
- The sample time must be small compared to the PWM period, to ensure sufficient resolution.

The model is based on the following assumptions:

- The REF output of this block is floating, it is not tied to the Electrical Reference. One consequence of this is that if you connect the PWM and REF electrical ports directly to the H-Bridge PWM and REF electrical ports, you must attach an Electrical Reference block to the REF connection line.
- Do not use the Controlled PWM block to drive a motor block directly. A PWM motor driver goes open circuit in between pulses. Use the H -Bridge block to drive a motor block.
- When driving a motor via the H-Bridge block, set the Simulation mode parameter to Averaged to speed up simulations. You must also set the Simulation mode parameter of the H-Bridge block to Averaged mode. This applies the average of the demanded PWM voltage to the motor. The Averaged mode assumes that the impedance of the motor inductive term is small at the PWM frequency. To verify this assumption, run the simulation using the PWM mode and compare the results to those obtained from using the Averaged mode.

Controlled PWM Voltage

- If you are linearizing your model, set the Simulation mode parameter to Averaged and ensure that you have specified the operating point of the block correctly. You can only linearize the block for inputs corresponding to a duty cycle greater than zero and less than 100 percent.
- When you use this block in PWM mode with the Use local solver option selected in the Solver Configuration block, set the Switching event type parameter to Discrete time Best for fixed-step solvers. Using the Asynchronous Best for variable-step solvers option in this situation may produce inaccuracies, because simulation with the local solver implies fixed step, and the PWM events will not always coincide precisely with the simulation steps. This results in PWM events sometimes occurring one simulation step late.

Controlled PWM Voltage

Dialog

Box and
Parameters

Block Parameters: Controlled PWM Voltage

Controlled PWM Voltage

This block represents a Pulse-Width Modulated (PWM) voltage source across its PWM and REF ports that depends on the reference voltage Vref across its +ref and -ref ports. The duty cycle in percent is given by $100^{*}($ Vref-Vmin)/(Vmax-Vmin) where Vmin and Vmax are the minimum and maximum values for Vref. The output voltage is zero when the pulse is low, and is set equal to the Output voltage amplitude parameter wh high.

At time zero, the pulse is initialized as high unless the duty cycle is set to zero or the Pulse delay time is greater than zero.

The Simulation mode can be set to PWM or Averaged. In PWM mode, the output is a PWM signal. In Averag mode, the output is constant with value equal to the averaged PWM signal.

Parameters		
PWM frequency:	1000	Hz
Pulse delay time:	0	s
Pulse width offset:	0	s
Input value Vmin for 0% duty cycle:	0	V
Input value Vmax for 100% duty cycle:	5	V
Output voltage amplitude:	5	V
Simulation mode:	PWM	
Switching event type:	Asynchronous - Best for variable-step solvers	
	OK Cancel	Help

Controlled PWM Voltage

PWM frequency

Frequency of the PWM output signal. The default value is 1000 Hz .

Pulse delay time

The pulse train does not start until the simulation time is equal to the Pulse delay time. You can specify a small value for Pulse delay time to fine-tune switching times and ensure that an off-going device is fully off before the on-going device starts to turn on. You can also use larger delay times, for example, if you need the pulse train to start only after a number of cycles. The value you provide must be greater than or equal to zero. This parameter is only visible when you select PWM for the Simulation mode parameter. The default value is 0 s .

Pulse width offset

The demanded pulse width as defined by the product of the demanded duty cycle and one over the pulse frequency can be offset by the value you provide for Pulse width offset. A positive value acts to lengthen the pulse by a fixed amount. A negative value acts to shorten the pulse. You can use this parameter, along with the Pulse delay time, to fine-tune switching times so as to minimize switching losses in some circuits. This parameter is only visible when you select PWM for the Simulation mode parameter. The default value is 0 s .

Input value Vmin for 0% duty cycle

Value of the input voltage at which the PWM signal has a 0% duty cycle. The default value is 0 V .

Input value Vmax for $\mathbf{1 0 0 \%}$ duty cycle
Value of the input voltage at which the PWM signal has a 100% duty cycle. The default value is 5 V .

Output voltage amplitude

Amplitude of the PWM signal when the output is high. The default value is 5 V .

Controlled PWM Voltage

Simulation mode

The type of output voltage can be PWM or Averaged. The default mode, PWM, produces a pulse-width modulated signal. In Averaged mode, the output is a constant whose value is equal to the average value of the PWM signal.

Switching event type

This parameter is only visible when you select PWM for the Simulation mode parameter. Select the switching event type when moving between output high and output low states:

- Asynchronous Best for variable-step solvers This option is more efficient for desktop simulation with variable-step solvers, because it requires fewer simulation steps for the same level of accuracy. This is the default.
- Discrete time Best for fixed-step solvers - Use with fixed-step solvers, including the local solver. For more information, see "Simulating with Fixed Time Step - Local and Global Fixed-Step Solvers".

Sample time

The time between updates of the block output state. The sample time must be a multiple of the simulation step size. In order for the PWM control to have sufficient resolution, set the sample time to less than one hundredth of the PWM period. (The PWM period is one over the PWM frequency.) This parameter is only visible when you select Discrete time Best for fixed-step solvers for the Switching event type parameter. The default value is $1 \mathrm{e}-6 \mathrm{~s}$.
$\begin{array}{ll}\text { Ports } & \text { The block has the following ports: } \\ \text { +ref } \\ \text {-ref } \quad \text { Positive electrical reference voltage. }\end{array}$

Controlled PWM Voltage

PWMPulse-width modulated signal.
REFFloating zero volt reference.
Examples See the Linear Electrical Actuator (System-Level Model) and Linear Electrical Actuator (Implementation Model) examples.
See Also Stepper Motor Driver

Purpose

Model stable resonator

Library

Description

Passive Devices block.

The Crystal block represents the electrical characteristics of a crystal. The following figure shows the equivalent circuit model of the Crystal

You specify the equivalent circuit parameters for this model when you set the Parameterization parameter to Equivalent circuit parameters.

- The capacitor C0 corresponds to the capacitance you specify in the Shunt capacitance, C0 parameter.
- The capacitor C1 corresponds to the capacitance you specify in the Motional capacitance, C1 parameter.
- The inductor L1 corresponds to the inductance you specify in the Motional inductance, L1 parameter.
- The resistor $R 1$ corresponds to the resistance you specify in the Equivalent series resistance, R1 parameter.

Most datasheets specify crystal frequency rather than inductance, so the block optionally accepts frequency data.

- When you set the Parameterization parameter to Series resonance data, the block uses the following relationship to calculate L1 from the series resonant frequency:

$$
f_{s}=\frac{1}{2 \pi \sqrt{L_{1} C_{1}}}
$$

Where f_{s} is the Series resonance, fs parameter value.

- When you set the Parameterization parameter to Parallel resonance data, the block uses the following relationship to calculate $L 1$ from the parallel resonant frequency:

$$
f_{a}=\frac{1}{2 \pi \sqrt{L_{1} C_{1}\left(C_{0}+C_{L}\right) /\left(C_{1}+C_{0}+C_{L}\right)}}
$$

Where:

- f_{a} is the Parallel resonance, fa parameter value.
- C_{L} is the Load capacitance, CL parameter value.

Some datasheets specify quality factor rather than equivalent series resistance, so the block optionally accepts quality factor data. When you set the R1 parameterization parameter to Quality factor Q, the block uses the following relationship to calculate R1 from the quality factor:

$$
Q=\frac{2 \pi f L_{1}}{R_{1}}
$$

Where Q is the $\mathbf{Q u a l i t y ~ f a c t o r , ~} \mathbf{Q}$ parameter value.

Note The R1 parameterization parameter is only visible when you select Series resonance data or Parallel resonance data for the Parameterization parameter.

Basic
 Assumptions and Limitations

Dialog Box and Parameters

The Crystal block models only the fundamental crystal vibration mode.

困 Block Parameters: Crystal				\times
Crystal This block implements an electrical equivalent circuit for a crystal. The equivalent circuit consists of a series R1-L1-C1 arm to represent the mechanical dynamics, plus a parallel shunt capacitance C 0 .				
-Parameters				
Parameterization:	Series resonance data			\checkmark
Series resonance, fs:	32.764		kHz	
R1 parameterization:	Equivalent series resistance R1			\checkmark
Equivalent series resistance, R1:	15		kOhm	
Motional capacitance, C 1 :	0.0035		pF	\checkmark
Shunt capacitance, CO :	1.6		pF	\checkmark
Initial voltage:	0		V	\checkmark
	OK	Cancel	Help	Apply

Parameterization

Select one of the following methods for block parameterization:

- Series resonance data - Provide series resonant frequency and capacitance data for the crystal. This method is the default.
- Parallel resonance data - Provide parallel resonant frequency and capacitance data for the crystal.
- Equivalent circuit parameters - Provide electrical parameters for an equivalent circuit model of the crystal.

Series resonance, fs

Crystal series resonant frequency. This parameter is only visible when you select Series resonance data for the Parameterization parameter. The default value is 32.764 kHz .

Parallel resonance, fa

Crystal parallel resonant frequency that corresponds to operating with a parallel load capacitance specified by the Load capacitance, CL parameter. This parameter is only visible when you select Parallel resonance data for the Parameterization parameter. The default value is 32.768 kHz .

Motional inductance, L1

Inductance that represents the mechanical mass of the crystal. This parameter is only visible when you select Equivalent circuit parameters for the Parameterization parameter. The default value is $6.742 \mathrm{e}+03 \mathrm{H}$.

R1 parameterization

Select one of the following methods for series resistance parameterization:

- Equivalent series resistance R1 - Provide the resistance value directly. This is the default method.
- Quality factor Q - Provide the quality factor that the block uses to calculate the resistance value.
This parameter is only visible when you select Series resonance data or Parallel resonance data for the Parameterization parameter.

Quality factor, \mathbf{Q}
Crystal quality factor. This parameter is only visible when you make one of the following selections:

- Series resonance data for the Parameterization parameter and Quality factor Q for the R1 parameterization parameter
- Parallel resonance data for the Parameterization parameter and Quality factor Q for the R1 parameterization parameter
The default value is $9 \mathrm{e}+04$.

Equivalent series resistance, R1

Motional damping term. This parameter is only visible when you make one of the following selections:

- Series resonance data for the Parameterization parameter and Equivalent series resistance R1 for the R1 parameterization parameter
- Parallel resonance data for the Parameterization parameter and Equivalent series resistance R1 for the R1 parameterization parameter
- Equivalent circuit parameters for the Parameterization parameter
The default value is $15 \mathrm{k} \Omega$.

Motional capacitance, C1

Capacitance that represents crystal mechanical stiffness under load. The default value is 0.0035 pF .

Load capacitance, CL

Load capacitance that corresponds to the Parallel resonance, fa parameter value. This parameter is only visible when you select Parallel resonance data for the Parameterization parameter. The default value is 12.5 pF .

Shunt capacitance, C0

Electrical capacitance between the two crystal electrical connections. The parameter value must be greater than zero. The default value is 1.6 pF .

Initial voltage

The output voltage at the start of the simulation when the output current is zero. The default value is 0 V .

Ports The block has the following ports:

Positive electrical port.

Negative electrical port.

Current-Controlled Switch

Purpose

Library

Description

Model current-controlled switch with hysteresis

SPICE-Compatible Components/Passive Devices
The Current-Controlled Switch block represents the electrical characteristics of a switch whose state is controlled by the current through the input ports (the controlling current):

- When the controlling current is greater than the sum of the Threshold current, IT and Hysteresis current, IH parameter values, the switch is closed and has a resistance equal to the On resistance, RON parameter value.
- When the controlling current is less than the Threshold current, IT parameter value minus the Hysteresis current, IH parameter value, the switch is open and has a resistance equal to the Off resistance, ROFF parameter value.
- When the controlling current is greater than or less than the Threshold current, IT parameter value by an amount less than or equal to the Hysteresis current, IH parameter value, the current is in the crossover region and the state of the switch remains unchanged.

The block output resistance model is discontinuous during switching. The discontinuity might cause numerical issues. Try the following actions to resolve the issues:

- Set the On resistance, RON and Off resistance, ROFF parameter values to keep the ratio $R O N / R O F F$ as small as possible, and less than $1 \mathrm{e}+12$.
- Increase the Hysteresis current, IH parameter value to reduce switch chatter.
- Decrease the Max step size parameter value (in the Configuration Parameters block dialog box).

Current-Controlled Switch

\square

Note This increases the simulation time.

Block Parameters: Current-Controlled Switch					\times
Current-Controlled Switch The block represents a current controlled switch. If the controlling current is greater than the sum of the threshold current and the hysteresis current the switch is closed and its resistance value is RON. If the controlling current is less than the difference of the threshold current minus the hysteresis current then the switch is open and its resistance value is ROFF. If the controlling current value is within the crossover region, the switch position is unchanged.					
Parameters					
Threshold current, T T:	0				\checkmark
Hysteresis current, IH:	0				\checkmark
On resistance, RON:	1			Ohm	\square
Off resistance, ROFF:	$1 \mathrm{e}+12$			Ohm	\checkmark
Initial switch state:	On			\checkmark	
		OK	Cancel	Help	Apply

Threshold current, IT

The current above which the block interprets the controlling current as HIGH. The default value is 0 A .

Note The controlling current must differ from the threshold current by at least the Hysteresis current, IH parameter value to change the state of the switch.

Hysteresis current, IH

The amount by which the controlling current must exceed or fall below the Threshold current, IT parameter value to change the state of the switch. The default value is 0 A .

Current-Controlled Switch

On resistance, RON

The resistance of the switch when it is closed. The default value is 1Ω.

Off resistance, ROFF

The resistance of the switch when it is open. The default value is $1 \mathrm{e}+12 \Omega$.

Initial switch state

Select one of the following options for the state of the switch at the start of the simulation:

- On - The switch is initially closed and its resistance value is equal to the On resistance, RON parameter value. This is the default option.
- Off - The switch is initially open and its resistance value is equal to the Off resistance, ROFF parameter value.

Ports
 The block has the following ports:

$+$
Positive electrical input and output ports.

Negative electrical input and output ports.

Current Source

Purpose Simulate current source with DC, AC, and noise components

Library

Sources
Description The Current Source block implements a current source with DC, AC, and noise components. The current flowing through the source from the - terminal to the + terminal is given by:

$$
i=i_{D C}+i_{A C} \sin (2 \pi f t+\phi)+i_{N}
$$

where:

- i_{DC} is the steady-state DC current component.
- i_{AC} is the amplitude of the AC current component.
- f is the frequency of the AC component.
- φ is the phase offset of the AC component.
- i_{N} is the noise current.

You can configure your source as DC-only, AC-only, or a combination of both. By default, both AC and DC components are set to 0 . Define the AC/DC current by specifying nonzero parameter values after placing the block in your model.
The noise component is also optional. If you set the Noise mode parameter to Enabled, then the added noise current is given by:

$$
i_{N}=\sqrt{P_{i} / 2} \frac{N(0,1)}{\sqrt{h}}
$$

where:

- P_{i} is the single-sided noise power spectral density for a 1 ohm load, in $\mathrm{A}^{\wedge} 2 / \mathrm{Hz}$.
- N is a Gaussian random number with zero mean and standard deviation of one.
- h is the sampling interval.

By default, the Noise mode parameter is set to Disabled, and the current source generates no thermal noise.

Noise Options

The block generates Gaussian noise by using the Random Number source in the Simscape Foundation library. You can control the random number seed by setting the Repeatability parameter:

- Not repeatable - Every time you simulate your model, the block resets the random seed using the MATLAB ${ }^{\circledR}$ random number generator:

```
seed = randi(2^32-1);
```

- Repeatable - The block uses a hidden parameter, called auto_seed, to always start the simulation with the same random number. The value of auto_seed is set whenever you copy the Resistor block from the block library to the model, or when you make a new copy of the Resistor block from an existing one in a model. The block sets the value using the MATLAB random number generator command shown above.
- Specify seed - If you select this option, the additional Seed parameter lets you directly specify the random number seed value.

Basic
 Assumptions and Limitations

Simulating with noise enabled slows down simulation. Choose the sample time (h) so that noise is generated only at frequencies of interest, and not higher.

Current Source

Dialog DC \& AC Components Tab

Box and
Parameters

DC current

The DC component of the output current. The default value is 0 A. Enter a nonzero value to add a DC component to the current source.

AC current peak amplitude

Amplitude of the AC component of the output current. The default value is 0 A . Enter a nonzero value to add an AC component to the current source.

AC current phase shift
Phase offset of the AC component of the output current. The default value is 0 degrees.

AC current frequency

Frequency of the AC component of the output current. The default value is 60 Hz .

Noise Tab

Noise mode

Select the noise option:

- Disabled - No noise is produced by the current source. This is the default.
- Enabled - The current source generates thermal noise, and the associated parameters become visible on the Noise tab.

Power spectral density

The single-sided spectrum noise power. Strictly-speaking, this is a density function for the square of the current, commonly thought

Current Source

of as a power into a 1 ohm load, and therefore units are $\mathrm{A}^{\wedge} 2 / \mathrm{Hz}$. To avoid this unit ambiguity, some datasheets quote noise current as a noise density with units of $\mathrm{A} / \sqrt{ } \mathrm{Hz}$. In this case, you should enter the square of the noise density quoted in the datasheet as the parameter value. The default value is $0 A^{\wedge} 2 / \mathrm{Hz}$.

Sample time

Defines the rate at which the noise source is sampled. Choose it to reflect the frequencies of interest in your model. Making the sample time too small will unnecessarily slow down your simulation. The default value is $1 \mathrm{e}-3 \mathrm{~s}$.

Repeatability

Select the noise control option:

- Not repeatable - The random sequence used for noise generation is not repeatable. This is the default.
- Repeatable - The random sequence used for noise generation is repeatable, with a system-generated seed.
- Specify seed - The random sequence used for noise generation is repeatable, and you control the seed by using the Seed parameter.

Seed

Random number seed used by the noise random number generator. This parameter is visible only if you select Specify seed for the Repeatability parameter. The default value is 0 .

Ports
The block has the following ports:
$+$
Positive electrical port.

Negative electrical port.
See Also Resistor, Voltage Source.

Purpose

Model constant current source

Library

Description

Dialog
Box and
Parameters
SPICE-Compatible Components/Sources terminals. device and has a conductance GMIN: default value is $1 \mathrm{e}-12$. to the desired value.

The DC Current Source block represents a constant current source whose output current value is independent of the voltage across its

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the + and - ports of the

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter

Constant value, DC

The value of the DC output current. The default value is 0 A .

Ports

The block has the following ports:

DC Current Source

$+$
Positive electrical voltage.

Negative electrical voltage.
See Also DC Voltage Source

Purpose

DC motor model with electrical and torque characteristics

Library

Description

Rotational Actuators
The DC Motor block represents the electrical and torque characteristics of a DC motor using the following equivalent circuit model:

You specify the equivalent circuit parameters for this model when you set the Model parameterization parameter to By equivalent circuit parameters. The resistor R corresponds to the resistance you specify in the Armature resistance parameter. The inductor L corresponds to the inductance you specify in the Armature inductance parameter. The permanent magnets in the motor induce the following back emf v_{b} in the armature:

$$
v_{b}=k_{v} \omega
$$

where k_{v} is the Back-emf constant and ω is the angular velocity. The motor produces the following torque, which is proportional to the motor current i :

$$
T_{E}=k_{t} i
$$

where k_{t} is the Torque constant. The DC Motor block assumes that there are no electromagnetic losses. This means that mechanical power is equal to the electrical power dissipated by the back emf in the armature. Equating these two terms gives:

$$
\begin{aligned}
& T_{E} \omega=v_{b} i \\
& k_{t} i \omega=k_{v} \omega i \\
& k_{v}=k_{t}
\end{aligned}
$$

As a result, you specify either k_{v} or k_{t} in the block dialog box.
The torque-speed characteristic for the DC Motor block is related to the parameters in the preceding figure. When you set the Model parameterization parameter to By stall torque \& no-load speed or By rated power, rated speed \& no-load speed, the block solves for the equivalent circuit parameters as follows:

1 For the steady-state torque-speed relationship, L has no effect.
2 Sum the voltages around the loop and rearrange for i :

$$
i=\frac{V-v_{b}}{R}=\frac{V-k_{v} \omega}{R}
$$

3 Substitute this value of i into the equation for torque:

$$
T_{E}=\frac{k_{t}}{R}\left(V-k_{v} \omega\right)
$$

When you set the Model parameterization parameter to By stall torque \& no-load speed, the block uses the preceding equation to determine values for R and k_{t} (and equivalently k_{v}).

When you set the Model parameterization parameter to By rated power, rated speed \& no-load speed, the block uses the rated speed and power to calculate the rated torque. The block uses the rated torque and no-load speed values in the preceding equation to determine values for R and k_{t}.

The block models motor inertia J and damping λ for all values of the Model parameterization parameter. The resulting torque across the block is:

$$
T=\frac{k_{t}}{R}\left(V-k_{v} \omega\right)-J \dot{\omega}-\lambda \omega
$$

It is not always possible to measure rotor damping, and rotor damping is not always provided on a manufacturer datasheet. An alternative is to use the no-load current to infer a value for rotor damping.
For no-load, the electrically-generated mechanical torque must equal the rotor damping torque:

$$
k_{t} i_{\text {noload }}=\lambda \omega_{\text {noload }}
$$

where $i_{\text {noload }}$ is the no-load current. If you select By no-load current for the Rotor damping parameterization parameter, then this equation is used in addition to the torque-speed equation to determine values for λ and the other equation coefficients.

The value for rotor damping, whether specified directly or in terms of no-load current, is taken into account when determining equivalent circuit parameters for Model parameterization options By stall torque and no-load speed and By rated power, rated speed and no-load speed.
When a positive current flows from the electrical + to - ports, a positive torque acts from the mechanical C to R ports.

Thermal Port

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Temperature Dependence and Thermal port tabs to the block dialog box.

Use the thermal port to simulate the effects of copper resistance losses that convert electrical power to heat. For more information on using thermal ports and on the Temperature Dependence and Thermal port tab parameters, see "Simulating Thermal Effects in Rotational and Translational Actuators".

Dialog
 Box and Parameters

Electrical Torque Tab

Block Parameters: DC Motor

DC Motor
This block represents the electrical and torque characteristics of a DC motor.
The block assumes that no electromagnetic energy is lost, and hence the back-emf and torque constants have the same numerical value when in SI units. Motor parameters can either be specified directly, or derived from no-load speed and stall torque. If no information is available on armature inductance, this parameter can be set to some small non-zero value.

When a positive current flows from the electrical + to - ports, a positive torque acts from the mechanical C to R ports. Motor torque direction can be changed by altering the sign of the back-emf or torque constants.

Parameters

Model parameterization

Select one of the following methods for block parameterization:

- By equivalent circuit parameters - Provide electrical parameters for an equivalent circuit model of the motor. This is the default method.
- By stall torque \& no-load speed - Provide torque and speed parameters that the block converts to an equivalent circuit model of the motor.
- By rated power, rated speed \& no-load speed - Provide power and speed parameters that the block converts to an equivalent circuit model of the motor.

Armature resistance

Resistance of the conducting portion of the motor. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter. The default value is 3.9Ω.

Armature inductance

Inductance of the conducting portion of the motor. If you do not have information about this inductance, set the value of this parameter to a small, nonzero number. The default value is $1.2 \mathrm{e}-05 \mathrm{H}$.

Define back-emf or torque constant

Indicate whether you will specify the motor's back-emf constant or torque constant. When you specify them in SI units, these constants have the same value, so you only specify one or the other in the block dialog box. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter. The default value is Specify back-emf constant.

Back-emf constant

The ratio of the voltage generated by the motor to the speed at which the motor is spinning. The default value is $7.2 \mathrm{e}-05 \mathrm{~V} / \mathrm{rpm}$. This parameter is only visible when you select Specify back-emf constant for the Define back-emf or torque constant parameter.

Torque constant

The ratio of the torque generated by the motor to the current delivered to it. This parameter is only visible when you select Specify torque constant for the Define back-emf or torque constant parameter. The default value is $6.876 \mathrm{e}-04 \mathrm{~N} * \mathrm{~m} / \mathrm{A}$.

Stall torque

The amount of torque generated by the motor when the speed is approximately zero. This parameter is only visible when you select By stall torque \& no-load speed for the Model parameterization parameter. The default value is $2.4 \mathrm{e}-04$ N*m.

No-load speed

Speed of the motor when not driving a load. This parameter is only visible when you select By stall torque \& no-load speed or By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is $1.91 \mathrm{e}+04 \mathrm{rpm}$.

Rated speed (at rated load)

Motor speed at the rated mechanical power level. This parameter is only visible when you select By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is $1.5 \mathrm{e}+04 \mathrm{rpm}$.

Rated load (mechanical power)

The mechanical power the motor is designed to deliver at the rated speed. This parameter is only visible when you select By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is 0.08 W .

Rated DC supply voltage

The voltage at which the motor is rated to operate. This parameter is only visible when you select By stall torque \& no-load speed or By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is 1.5 V .

Rotor damping parameterization

Select one of the following methods to specify rotor damping:

- By damping value - Specify a value for rotor damping directly, by using the Rotor damping parameter on the Mechanical tab. This is the default.
- By no-load current - The block calculates rotor damping based on the values that you specify for the No-load current and DC supply voltage when measuring no-load current parameters. If you select this option, the Rotor damping parameter is not available on the Mechanical tab.

No-load current

Specify the no-load current value, to be used for calculating the rotor damping. This parameter is only visible when you select By no-load current for the Rotor damping parameterization parameter. The default value is 0 A .

DC supply voltage when measuring no-load current Specify the DC supply voltage corresponding to the no-load current value, to be used for calculating the rotor damping. This parameter is only visible when you select By no-load current for the Rotor damping parameterization parameter. The default value is 1.5 V .

Mechanical Tab

Block Parameters: DC Motor

DC Motor

This block represents the electrical and torque characteristics of a DC motor.
The block assumes that no electromagnetic energy is lost, and hence the back-emf and torque constants have the same numerical value when in SI units. Motor parameters can either be specified directly, or derived from no-load speed and stall torque. If no information is available on armature inductance, this parameter can be set to some small non-zero value.

When a positive current flows from the electrical + to - ports, a positive torque acts from the mechanical C to R ports. Motor torque direction can be changed by altering the sign of the back-emf or torque constants.

Parameters

Electrical Torque	Mechanical			
Rotor inertia:		0.01	$\mathrm{g}^{*} \mathrm{~cm}^{\wedge} 2$	\checkmark
Rotor damping:		0	$\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$	\checkmark
Initial rotor speed:		0	rpm	*

Rotor inertia

Resistance of the rotor to change in motor motion. The default value is $0.01 \mathrm{~g}^{*} \mathrm{~cm}^{2}$. The value can be zero.

Rotor damping

Energy dissipated by the rotor. This parameter is only visible when you select By damping value for the Rotor damping
parameterization parameter on the Electrical tab. The default value is $1 \mathrm{e}-08 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

Initial rotor speed

Speed of the rotor at the start of the simulation. The default value is 0 rpm .
Ports
The block has the following ports:
$+$
Positive electrical input.
Negative electrical input.
C
Mechanical rotational conserving port.
R
Mechanical rotational conserving port.

Examples

See the following DC motor examples:

- Linear Electrical Actuator (Motor Model)
- Linear Electrical Actuator (System-Level Model)
- Linear Electrical Actuator (Implementation Model)

References [1] Bolton, W. Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering, 3rd edition Pearson Education, 2004.

See Also Induction Motor, Servomotor, Shunt Motor, and Universal Motor.

Purpose

Model constant voltage source

Library

SPICE-Compatible Components/Sources
Description

Dialog
 Box and Parameters

Ports

The block has the following ports:

$$
\begin{aligned}
& +\quad \text { Positive electrical voltage. } \\
& -\quad \text { Negative electrical voltage. }
\end{aligned}
$$

See Also
DC Current Source

Purpose	Behavioral model of power converter
Library	Sources

Description The DC-DC Converter block represents a behavioral model of a power
 converter. This power converter regulates voltage on the load side, and the required amount of power is drawn from the supply side so as to balance input power, output power, and losses. Optionally the converter can support regenerative power flow from load to supply.

The following circuit illustrates the behavior of the converter.

The $\mathrm{P}_{\text {fixed }}$ component draws a constant power, and corresponds to converter losses that are independent of load current. The power drawn is set by the Fixed converter losses independent of loading parameter value. The resistor $\mathrm{R}_{\text {out }}$ corresponds to losses that increase with load current, and is determined from the value you specify for the Percentage efficiency at rated output power parameter.

The voltage source is defined by the following equation:

$$
v=v_{\text {ref }}-i_{\text {load }} D+i_{\text {load }} R_{\text {out }}
$$

DC-DC Converter

where:

- $v_{\text {ref }}$ is the load side voltage set point, as defined by the value you specify for the Output voltage reference demand parameter.
- D is the value you specify for the Output voltage droop with output current parameter. Having a separate value for droop makes control of how output voltage varies with load independent of load-dependent losses.

The current source value i is calculated so that the power flowing in to the converter equals the sum of the power flowing out plus the converter losses.

If the voltage presented by the load is higher than the converter output voltage reference demand, then power will flow from the load to the converter. If you set the Power direction parameter to Unidirectional power flow from supply to regulated side, then the power is absorbed by the converter, and the current source current i is zero. If you set the Power direction parameter to Bidirectional power flow, then the power is transmitted to the supply side, and i becomes negative.

Optionally the block can include voltage regulation dynamics. If you select Specify voltage regulation time constant for the Dynamics parameter, then a first-order lag is added to the equation defining the voltage source value. With the dynamics enabled, a step change in load results in a transient change in output voltage, the time constant being defined by the Voltage regulation time constant parameter.

Basic
 Assumptions and Limitations

The model is based on the following assumptions:

- The two electrical networks connected to the supply-side and regulated-side terminals must each have their own Electrical Reference block.
- The supply-side equation defines a power constraint on the product of the voltage $\left(v_{\mathrm{s}}\right)$ and the current $\left(i_{\mathrm{s}}\right)$. For simulation, the solver

DC-DC Converter

must be able to uniquely determine v_{s}. To ensure that the solution is unique, the block implements two assertions:

- $v_{\mathrm{s}}>0$
- $i_{\mathrm{s}}<i_{\text {max }}$

The first assertion ensures that the sign of v_{s} is uniquely defined. The second deals with the case when the voltage supply to the block has a series resistance. When there is a series resistance, there are two possible steady-state solutions for i_{s} that satisfy the power constraint, the one with the smaller magnitude being the desired one. You should set the value for the Maximum expected supply-side current parameter ($i_{\max }$) to be larger than the expected maximum current. This will ensure that when the model is initialized the initial current does not start at the undesired solution.
Dialog

- "Main Tab" on page 1-109
- "Losses Tab" on page 1-111 Parameters
- "Dynamics Tab" on page 1-113

DC-DC Converter

Main Tab

Block Parameters: DC-DC Converter

DC-DC Converter

Behavioral model of an ideal DC-DC converter. The block can be used to represent unidirectional or bidirectic converters without the need to simulate individual switching events. The supply-side can be connected to an voltage, and the regulated-side voltage has optional droop.

Note that the two electrical networks connected to the primary and secondary windings must each have thei Electrical Reference block.

Parameters

Main	Losses	Dynamics

$\begin{array}{l}\text { Output voltage reference } \\ \text { demand: }\end{array}$	10
V	

Output voltage droop with output current:
0.1

Ohm
Power direction:
Maximum expected supply-side
Unidirectional power flow from supply to regulated side current:

2
A
OK Cancel Help

Output voltage reference demand

The set point for the voltage regulator, and the output voltage value when there is no output current. The default value is 10 V .

Output voltage droop with output current

The number of volts that the output voltage will drop from the set point for an output current of 1 A . The default value is $0.1 \mathrm{~V} / \mathrm{A}$.

Power direction

Select one of the following methods for the direction of power conversion:

- Unidirectional power flow from supply to regulated side - Most small power regulators are unidirectional. This is the default option.
- Bidirectional power flow - Larger power converters can be bidirectional, for example, converters used in electric vehicles to allow regenerative braking

Maximum expected supply-side current

Set this value to a value greater than the maximum expected supply-side current in your model. Using twice the expected maximum current is generally sufficient. For more information, see "Basic Assumptions and Limitations" on page 1-107. The default value is 2 A .

DC-DC Converter

Losses Tab

Block Parameters: DC-DC Converter

DC-DC Converter

Behavioral model of an ideal DC-DC converter. The block can be used to represent unidirectional or bidirectic converters without the need to simulate individual switching events. The supply-side can be connected to an voltage, and the regulated-side voltage has optional droop.

Note that the two electrical networks connected to the primary and secondary windings must each have their Electrical Reference block.

Parameters

Main Losses Dynamics

Rated output power:
10
W
Percentage efficiency at rated output power:

Fixed converter losses independent of loading:

80

1 W

Rated output power

The output power for which the percentage efficiency value is given. The default value is 10 W .

DC-DC Converter

Percentage efficiency at rated output power

The efficiency as defined by 100 times the output load power divided by the input supply power. The default value is 80 percent.

Fixed converter losses independent of loading

The power drawn by the $\mathrm{P}_{\text {fixed }}$ component in the equivalent circuit diagram, which corresponds to converter losses that are independent of load current. The default value is 1 W .

DC-DC Converter

Dynamics Tab

Block Parameters: DC-DC Converter

DC-DC Converter

Behavioral model of an ideal DC-DC converter. The block can be used to represent unidirectional or bidirectic converters without the need to simulate individual switching events. The supply-side can be connected to an voltage, and the regulated-side voltage has optional droop.

Note that the two electrical networks connected to the primary and secondary windings must each have theii Electrical Reference block.

Parameters

```
Main Losses Dynamics
```

Dynamics:
No dynamics

Dynamics

Specify whether to include voltage regulation dynamics:

- No dynamics - Do not consider the voltage regulation dynamics. This is the default option.

DC-DC Converter

- Specify voltage regulation time constant - Add a first-order lag to the equation defining the voltage source value. With the dynamics enabled, a step change in load results in a transient change in output voltage.

Voltage regulation time constant

The time constant associated with voltage transients when the load current is stepped. This parameter is only visible when you select Specify voltage regulation time constant for the Dynamics parameter. The default value is 0.02 s .

Initial output voltage demand

This is the value of $v_{\text {ref }}$ at time zero. Normally, $v_{\text {ref }}$ is defined by the Output voltage reference demand parameter. However, if you want to initialize the model with no transients when delivering a steady-state load current, you can set the initial $v_{\text {ref }}$ value by using this parameter, and increase it accordingly to take account of output resistance and droop. This parameter is only visible when you select Specify voltage regulation time constant for the Dynamics parameter. The default value is 10 V .

Ports
The block has four electrical conserving ports. Polarity is indicated by the + and - signs.

Purpose

Library

Description

Diode model; piecewise linear, piecewise linear zener, or exponential diode

Semiconductor Devices
The Diode block represents one of the following types of diodes:

- "Piecewise Linear" on page 1-115
- "Piecewise Linear Zener" on page 1-115
- "Exponential" on page 1-116

Piecewise Linear

The piecewise linear diode model is the same model found in the Simscape Diode block, with the addition of a fixed junction capacitance. If the diode forward voltage exceeds the value specified in the Forward voltage parameter, the diode behaves as a linear resistor with the resistance specified in the On resistance parameter. Otherwise, the diode behaves as a linear resistor with the small conductance specified in the Off conductance parameter. Zero voltage across the diode results in zero current flowing.

Piecewise Linear Zener

The piecewise linear zener diode model behaves like the piecewise linear diode model for bias voltages above $-V z$, where $V z$ is the Reverse breakdown voltage Vz parameter value. For voltages less than $-V z$, the diode behaves as a linear resistor with the low Zener resistance specified in the Zener resistance $\mathbf{R z}$ parameter. This diode model also includes a fixed junction capacitance.

Note The Reverse breakdown voltage Vz_{z} parameter is defined as a positive number. The p-n voltage at breakdown is $-V z$, which is negative.

Diode

Exponential

The exponential diode model provides the following relationship between the diode current I and the diode voltage V :

$$
\begin{array}{ll}
I=I S \cdot\left(e^{\frac{q V}{N k T_{m 1}}-1}\right) & V>-B V \\
I=-I S \cdot\left(e^{\frac{-q(V+V z)}{k T_{m 1}}}-e^{\frac{q V}{N k T_{m 1}}}\right) & V \leq-B V
\end{array}
$$

where:

- q is the elementary charge on an electron (1.602176e-19 Coulombs).
- k is the Boltzmann constant (1.3806503e-23 J/K).
- $B V$ is the Reverse breakdown voltage $\mathbf{B V}$ parameter value.
- N is the emission coefficient.
- IS is the saturation current.
- $T_{\mathrm{m} 1}$ is the temperature at which the diode parameters are specified, as defined by the Measurement temperature parameter value.

When $\left(q V / N k T_{\mathrm{m} 1}\right)>80$, the block replaces $e^{\frac{q V}{N k T_{m 1}}}$ with $\left(q V / N k T_{\mathrm{m} 1}-\right.$ 79) e^{80}, which matches the gradient of the diode current at $\left(q V / N k T_{\mathrm{m} 1}\right)$ $=80$ and extrapolates linearly. When $\left(q V / N k T_{\mathrm{m} 1}\right)<-79$, the block replaces $e^{\frac{q V}{N k T_{m 1}}}$ with $\left(q V / N k T_{\mathrm{m} 1}+80\right) \mathrm{e}^{-79}$, which also matches the gradient and extrapolates linearly. Typical electrical circuits do not reach these extreme values. The block provides this linear extrapolation to help convergence when solving for the constraints during simulation.

When you select Use parameters IS and N for the Parameterization parameter, you specify the diode in terms of the Saturation current

IS and Emission coefficient N parameters. When you select Use I-V curve data points for the Parameterization parameter, you specify two voltage and current measurement points on the diode I-V curve and the block derives the $I S$ and N values. The block then calculates $I S$ and N as follows:

- $\mathrm{N}=\left(\left(V_{1}-V_{2}\right) / V_{t}\right) /\left(\log \left(I_{1}\right)-\log \left(I_{2}\right)\right)$
- $\operatorname{IS}=\left(I_{1} /\left(\exp \left(V_{1} /\left(\mathrm{N} V_{t}\right)\right)-1\right)+I_{2} /\left(\exp \left(V_{2} /\left(\mathrm{N} V_{t}\right)\right)-1\right)\right) / 2$
where:
- $V_{\mathrm{t}}=k T_{\mathrm{m} 1} / q$.
- V_{1} and V_{2} are the values in the Voltages [V1 V2] vector.
- I_{1} and I_{2} are the values in the Currents [I1 I2] vector.

When you select Use an I-V data point and IS for the Parameterization parameter, then the block calculates N as follows:

$$
N=V_{1} /\left(V_{t} \log \left(\frac{I_{1}}{I S}+1\right)\right)
$$

When you select Use an I-V data point and N for the Parameterization parameter, then the block calculates $I S$ as follows:

$$
I S=I_{1} /\left(\exp \left(V_{1} /\left(N V_{t}\right)-1\right)\right)
$$

The exponential diode model provides the option to include a junction capacitance:

- When you select Include fixed or zero junction capacitance for the Junction capacitance parameter, the capacitance is fixed.
- When you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter, the block uses the coefficients
$C J O, V J, M$, and $F C$ to calculate a junction capacitance that depends on the junction voltage.
- When you select Use C-V curve data points for the Junction capacitance parameter, the block uses three capacitance values on the C-V capacitance curve to estimate $C J O, V J$, and M and uses these values with the specified value of $F C$ to calculate a junction capacitance that depends on the junction voltage. The block calculates CJO, VJ, and M as follows:
- CJ0 $=C_{1}\left(\left(V_{R 2}-V_{R 1}\right) /\left(V_{R 2}-V_{R 1}\left(C_{2} / C_{1}\right)^{-1 / M}\right)\right)^{M}$
- $V J=-\left(-V_{R 2}\left(C_{1} / C_{2}\right)^{-1 / M}+V_{R 1}\right) /\left(1-\left(C_{1} / C_{2}\right)^{-1 / M}\right)$
- $M=\log \left(C_{3} / C_{2}\right) / \log \left(V_{R 2} / V_{R 3}\right)$
where:
- $V_{R 1}, V_{R 2}$, and $V_{R 3}$ are the values in the Reverse bias voltages [VR1 VR2 VR3] vector.
- C_{1}, C_{2}, and C_{3} are the values in the Corresponding capacitances [C1 C2 C3] vector.
It is not possible to estimate $F C$ reliably from tabulated data, so you must specify its value using the Capacitance coefficient FC parameter. In the absence of suitable data for this parameter, use a typical value of 0.5 .
The reverse bias voltages (defined as positive values) should satisfy $V_{R 3}>V_{R 2}>V_{R 1}$. This means that the capacitances should satisfy $C_{1}>C_{2}>C_{3}$ as reverse bias widens the depletion region and hence reduces capacitance. Violating these inequalities results in an error. Voltages $V_{R 2}$ and $V_{R 3}$ should be well away from the Junction potential $V J$. Voltage $V_{R 1}$ should be less than the Junction potential $V J$, with a typical value for $V_{R 1}$ being 0.1 V .

The voltage-dependent junction is defined in terms of the capacitor charge storage Q_{j} as:

- For $V<F C \cdot V J$:

$$
Q_{j}=C J 0 \cdot(V J /(M-1)) \cdot\left((1-V / V J)^{1-M}-1\right)
$$

- For $V \geq F C \cdot V J:$

$$
Q_{j}=C J 0 \cdot F_{1}+\left(C J 0 / F_{2}\right) \cdot\left(F_{3} \cdot(V-F C \cdot V J)+0.5(M / V J) \cdot\left(V^{2}-(F C \cdot V J)^{2}\right.\right.
$$

where:

- $\left.F_{1}=(V J /(1-M)) \cdot\left(1-(1-F C)^{1-M}\right)\right)$
- $\left.\left.F_{2}=(1-F C)^{1+M}\right)\right)$
- $F_{3}=1-F C \cdot(1+M)$

These equations are the same as used in [2], except that the temperature dependence of $V J$ and $F C$ is not modeled. This model does not include the diffusion capacitance term that affects performance for high frequency switching applications.

Modeling Charge

For applications such as commutation diodes it can be important to model diode charge dynamics. When a forward-biased diode has a reverse voltage applied across it, it takes time for the charge to dissipate and hence for the diode to turn off. The time taken for the diode to turn off is captured primarily by the transit time parameter. Once the diode is off, any remaining charge then dissipates, the rate at which this happens being determined by the carrier lifetime.
The Diode block uses the model of Lauritzen and Ma [3] to capture these effects. The three defining equations are:

$$
I=\frac{q_{E}-q_{M}}{T T}
$$

Diode

$$
\begin{aligned}
& \frac{d q_{M}}{d t}+\frac{q_{M}}{\tau}-\frac{q_{E}-q_{M}}{T T}=0 \\
& q_{E}=(\tau+T T) I S\left(\exp \left(\frac{V}{N \cdot V_{t}}\right)-1\right)
\end{aligned}
$$

where:

- I is the diode current.
- V is the diode voltage.
- N is the emission coefficient.
- q_{E} is the junction charge.
- q_{M} is the total stored charge.
- $T T$ is the transit time.
- τ is the carrier lifetime.

Datasheets do not typically provide values for $T T$ and τ. Therefore the Diode block provides an alternative parameterization in terms of Peak reverse current, Irrm and Reverse recovery time, trr. Equivalent values for $T T$ and τ are calculated from these values, plus information on the initial forward current and rate of change of current used in the test circuit when measuring I_{rrm} and t_{rr}. The test circuit can consist of a series voltage source, resistor, inductor and the diode. The polarity of the voltage source is switched so as to move the diode from forward conduction to reverse biased. The following figure shows an idealized diode current response.

The value of the series resistor and applied voltage value determine the initial current I_{F}. The value of the series inductance and the applied reverse voltage value determine the current gradient, a.

The precise values of peak reverse current and reverse recovery time depend on the test circuit used. Also, junction capacitance has some effect on the current recovery characteristic. However, a junction capacitor value that dominates the response is physically unrealistic.

Only the exponential diode supports modeling of the diode charge dynamics. If you select the Exponential for the Diode model parameter, then the Capacitance tab contains an additional parameter called Charge dynamics. Select between the three options:

- Do not model charge dynamics
- Use peak reverse current and reverse recovery time
- Use transit time and carrier lifetime

Modeling Temperature Dependence

The default behavior for the Diode is that dependence on temperature is not modeled, and the device is simulated at the temperature for which you provide block parameters. The Exponential diode model contains several options for modeling the dependence of the diode current-voltage relationship on the temperature during simulation. Temperature dependence of the junction capacitance is not modeled, this being a much smaller effect.

When including temperature dependence, the diode defining equation remains the same. The measurement temperature value, $T_{m 1}$, is replaced with the simulation temperature, T_{s}. The saturation current, $I S$, becomes a function of temperature according to the following equation:

$$
I S_{T s}=I S_{T m 1} \cdot\left(T_{s} / T_{m 1}\right)^{X T / / N} \cdot \exp \left(-\frac{E G}{N k T_{s}}\left(1-T_{s} / T_{m 1}\right)\right)
$$

where:

- $T_{\mathrm{m} 1}$ is the temperature at which the diode parameters are specified, as defined by the Measurement temperature parameter value.
- T_{s} is the simulation temperature.
- $I S_{\mathrm{Tm} 1}$ is the saturation current at measurement temperature.
- $I S_{\text {Ts }}$ is the saturation current at simulation temperature. This is the saturation current value used in the standard diode equation when temperature dependence is modeled.
- $E G$ is the energy gap for the semiconductor type measured in Joules. The value for silicon is usually taken to be 1.11 eV , where 1 eV is $1.602 \mathrm{e}-19$ Joules.
- XTI is the saturation current temperature exponent. This is usually set to 3.0 for pn-junction diodes, and 2.0 for Schottky barrier diodes.
- N is the emission coefficient.
- k is the Boltzmann constant ($1.3806503 \mathrm{e}-23 \mathrm{~J} / \mathrm{K}$).

Appropriate values for XTI and $E G$ depend on the type of diode and the semiconductor material used. Default values for particular material types and diode types capture approximate behavior with temperature. The block provides default values for common types of diode.

In practice, the values of $X T I$ and $E G$ need tuning to model the exact behavior of a particular diode. Some manufacturers quote these tuned values in a SPICE Netlist, and you can read off the appropriate values. Otherwise you can determine improved estimates for $E G$ by using a datasheet-defined current-voltage data point at a higher temperature. The block provides a parameterization option for this. It also gives the option of specifying the saturation current at a higher temperature $I S_{T m 2}$ directly.

You can also tune the values of $X T I$ and $E G$ yourself, to match lab data for your particular device. You can use Simulink ${ }^{\circledR}$ Design Optimization ${ }^{\mathrm{TM}}$ software to help tune the values for XTI and $E G$.

Caution Device temperature behavior is also dependent on the emission coefficient. An inappropriate value for the emission coefficient can give incorrect temperature dependence, because saturation current is a function of the ratio of $E G$ to N.

If defining a finite reverse breakdown voltage $B V$, then the value of the reverse breakdown voltage is modulated by the reverse breakdown temperature coefficient $T C V$ (specified using the Reverse breakdown voltage temperature coefficient, $\mathrm{dBV} / \mathrm{dT}$ parameter):

$$
B V_{\mathrm{Ts}}=B V_{\mathrm{Tm} 1}-T C V \cdot\left(T_{\mathrm{s}}-T_{\mathrm{m} 1}\right)
$$

Thermal Port

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port.

Diode

This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.

Use the thermal port to simulate the effects of generated heat and device temperature. For more information on using thermal ports and on the Thermal port tab parameters, see "Simulating Thermal Effects in Semiconductors".

Basic Assumptions and Limitations

The Exponential diode model has the following limitations:

- When you select Use I-V curve data points for the Parameterization parameter, choose a pair of voltages near the diode turn-on voltage. Typically, this is in the range from 0.05 to 1 Volt. Using values outside of this region may lead to numerical issues and poor estimates for $I S$ and N.
- The block does not account for temperature-dependent effects on the junction capacitance.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

Dialog
 Main Tab
 Box and Parameters

Block Parameters: Diode

Diode

This block represents a diode. Use the Diode model parameter to select one of the following model types:
[1] Piecewise Linear Diode. This option invokes the diode model from the Simscape Foundation Library.
[2] Piecewise Linear Zener Diode (i.e. piecewise linear diode with reverse breakdown characteristics). This model is identical to the Piecewise Linear Diode for reverse voltages above the Reverse Breakdown Voltage Vz. For voltages below Vz the diode breaks down with a low corresponding Zener Resistance Rz.
[3] Exponential Diode. Uses the standard exponential diode equation $\mathrm{I}=\mathrm{Is} *\left(\exp \left(\mathrm{~V} /\left(\mathrm{N}^{*} \mathrm{~V} \mathrm{t}\right)\right)-1\right)$ where Is is the Saturation current, Vt is the thermal voltage, and N is the emission coefficient (>=1). Vt is given by $\mathrm{Vt}=\mathrm{k}^{*} \mathrm{~T} / \mathrm{e}$ where k is Boltzmann's constant, T is the absolute Temperature of the $\mathrm{p}-\mathrm{n}$ junction, and e is the magnitude of charge on an electron.

Parameters

Main	Reverse Breakdown	Ohmic Resistance	Capacitance
Temperature Dependence			
Diode model:	Piecewise Linear (Foundation Library)		
Forward voltage:	0.6	V	
On resistance:	0.3	Ohm	
Off conductance:	$1 \mathrm{e}-8$	S	

Diode model

Select one of the following diode models:

Diode

- Piecewise Linear (Foundation Library) - Use a piecewise linear model for the diode, as described in "Piecewise Linear" on page 1-115. This is the default method.
- Piecewise Linear Zener - Use a piecewise linear model with reverse breakdown characteristics for the diode, as described in "Piecewise Linear Zener" on page 1-115.
- Exponential - Use a standard exponential model for the diode, as described in "Exponential" on page 1-116.

Forward voltage

Minimum voltage that needs to be applied for the diode to become forward-biased. This parameter is only visible when you select Piecewise Linear (Foundation Library) or Piecewise Linear Zener for the Diode model parameter. The default value is 0.6 V .

On resistance

The resistance of the diode when it is forward biased. This parameter is only visible when you select Piecewise Linear (Foundation Library) or Piecewise Linear Zener for the Diode model parameter. The default value is 0.3Ω.

Off conductance

The conductance of the diode when it is reverse biased. This parameter is only visible when you select Piecewise Linear (Foundation Library) or Piecewise Linear Zener for the Diode model parameter. The default value is 1e-08 $1 / \Omega$.

Parameterization

Select one of the following methods for model parameterization:

- Use two I-V curve data points - Specify measured data at two points on the diode I-V curve. This is the default method.
- Use parameters IS and N - Specify saturation current and emission coefficient.
- Use an I-V data point and IS - Specify measured data at a single point on the diode I-V curve in combination with the saturation current.
- Use an I-V data point and N - Specify measured data at a single point on the diode I-V curve in combination with the emission coefficient.

This parameter is only visible when you select Exponential for the Diode model parameter.

Currents [I1 I2]

A vector of the current values at the two points on the diode I-V curve that the block uses to calculate $I S$ and N. This parameter is only visible when you select Exponential for the Diode model parameter and Use two I-V curve data points for the Parameterization parameter. The default value is [0.0137 0.545] A.

Voltages [V1 V2]

A vector of the voltage values at the two points on the diode I-V curve that the block uses to calculate $I S$ and N. This parameter is only visible when you select Exponential for the Diode model parameter and Use two I-V curve data points for the Parameterization parameter. The default value is [$\begin{array}{lll}0.6 & 0.7\end{array}$] V.

Current I1

A current value at the point on the diode I-V curve that the block uses for calculations. This parameter is only visible when you select Exponential for the Diode model parameter and either Use an I-V data point and IS or Use an I-V data point and N for the Parameterization parameter. Depending on the Parameterization value, the block uses this parameter to calculate either N or $I S$. The default value is 0.07 A .

Voltage V1

A voltage value at the point on the diode I-V curve that the block uses for calculations. This parameter is only visible when you

Diode

select Exponential for the Diode model parameter and either Use an I-V data point and IS or Use an I-V data point and N for the Parameterization parameter. Depending on the Parameterization value, the block uses this parameter to calculate either N or $I S$. The default value is 0.7 V .

Saturation current IS

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. This parameter is only visible when you select Exponential for the Diode model parameter and either Use parameters IS and N or Use an I-V data point and IS for the Parameterization parameter. The default value is $1 \mathrm{e}-14 \mathrm{~A}$.

Measurement temperature

The temperature $T_{\mathrm{m} 1}$ at which IS or the I-V curve was measured. This parameter is only visible when you select Exponential for the Diode model parameter. The default value is $25^{\circ} \mathrm{C}$.

Emission coefficient \mathbf{N}

The diode emission coefficient or ideality factor. This parameter is only visible when you select Exponential for the Diode model parameter and either Use parameters IS and N or Use an I-V data point and N for the Parameterization parameter. The default value is 1 .

Reverse Breakdown Tab

Block Parameters: Diode

Diode

This block represents a diode. Use the Diode model parameter to select one of the following model types:
[1] Piecewise Linear Diode. This option invokes the diode model from the Simscape Foundation Library.
[2] Piecewise Linear Zener Diode (i.e. piecewise linear diode with reverse breakdown characteristics). This model is identical to the Piecewise Linear Diode for reverse voltages above the Reverse Breakdown Voltage Vz. For voltages below Vz the diode breaks down with a low corresponding Zener Resistance Rz.
[3] Exponential Diode. Uses the standard exponential diode equation $\mathrm{I}=\mathrm{Is}^{*}\left(\exp \left(\mathrm{~V} /\left(\mathrm{N}^{*} \mathrm{~V} \mathrm{~V}\right)\right)-1\right)$ where Is is the Saturation current, Vt is the thermal voltage, and N is the emission coefficient ($>=1$). Vt is given by $\mathrm{Vt}=\mathrm{k}^{*} \mathrm{~T} / \mathrm{e}$ where k is Boltzmann's constant, T is the absolute Temperature of the $\mathrm{p}-\mathrm{n}$ junction, and e is the magnitude of charge on an electron.

Parameters

Main	Reverse Breakdown	Ohmic Resistance	Capacitance
Zener resistance, Rz:	0.3	Temperature Dependence	
Reverse breakdown voltage, $\mathrm{Vz}:$	50		

Zener resistance Rz

The resistance of the diode when the voltage is less than the Reverse breakdown voltage Vz value. This parameter is only visible when you select Piecewise Linear Zener for the Diode model parameter. The default value is 0.3Ω.

Diode

Reverse breakdown voltage Vz

The reverse voltage below which the diode resistance changes to the Zener resistance $\mathbf{R z}$ value. This parameter is only visible when you select Piecewise Linear Zener for the Diode model parameter. The default value is 50 V .

Reverse breakdown voltage BV

The reverse voltage below which to model the rapid increase in conductance that occurs at diode breakdown. This parameter is only visible when you select Exponential for the Diode model parameter. The default value is Inf V, which effectively omits reverse breakdown from the model.

Ohmic Resistance Tab

Block Parameters: Diode

Diode
This block represents a diode. Use the Diode model parameter to select one of the following model types:
[1] Piecewise Linear Diode. This option invokes the diode model from the Simscape Foundation Library.
[2] Piecewise Linear Zener Diode (i.e. piecewise linear diode with reverse breakdown characteristics). This model is identical to the Piecewise Linear Diode for reverse voltages above the Reverse Breakdown Voltage Vz. For voltages below Vz the diode breaks down with a low corresponding Zener Resistance Rz.
[3] Exponential Diode. Uses the standard exponential diode equation $\mathrm{I}=\mathrm{Is} *\left(\exp \left(\mathrm{~V} /\left(\mathrm{N}^{*} \mathrm{~V} /\right)\right)-1\right)$ where Is is the Saturation current, Vt is the thermal voltage, and N is the emission coefficient ($>=1$). Vt is given by $\mathrm{Vt}=\mathrm{k}^{*} \mathrm{~T} / \mathrm{e}$ where k is Boltzmann's constant, T is the absolute Temperature of the $p-n$ junction, and e is the magnitude of charge on an electron.

Parameters

Main	Reverse Breakdown	Ohmic Resistance	Capacitance
Ohmic resistance, RS:	0.01	Temperature Dependence	
		Ohm	

Ohmic resistance RS

The series diode connection resistance. This parameter is only visible when you select Exponential for the Diode model parameter. The default value is 0.01Ω.

Diode

Capacitance Tab

Block Parameters: Diode

Diode
This block represents a diode. Use the Diode model parameter to select one of the following model types:
[1] Piecewise Linear Diode. This option invokes the diode model from the Simscape Foundation Library.
[2] Piecewise Linear Zener Diode (i.e. piecewise linear diode with reverse breakdown characteristics). This model is identical to the Piecewise Linear Diode for reverse voltages above the Reverse Breakdown Voltage Vz. For voltages below Vz the diode breaks down with a low corresponding Zener Resistance Rz.
[3] Exponential Diode. Uses the standard exponential diode equation $\mathrm{I}=\mathrm{Is} *\left(\exp \left(\mathrm{~V} /\left(\mathrm{N}^{*} \mathrm{~V} \mathrm{~V}\right)\right)-1\right)$ where Is is the Saturation current, Vt is the thermal voltage, and N is the emission coefficient ($>=1$). Vt is given by Vt $=\mathrm{k}^{*} \mathrm{~T} / \mathrm{e}$ where k is Boltzmann's constant, T is the absolute Temperature of the $\mathrm{p}-\mathrm{n}$ junction, and e is the magnitude of charge on an electron.

Parameters

Main	Reverse Breakdown	Ohmic Resistance	Capacitance
Pemperature Dependence			
Junction capacitance:	Fixed or zero junction capacitance		
Zero-bias junction capacitance, CJ0:	5	pF	
Charge dynamics:		Do not model charge dynamics	

Junction capacitance

- When you select Piecewise Linear (Foundation Library) or Piecewise Linear Zener for the Diode model parameter, the Junction capacitance parameter is the fixed junction capacitance value. The default value is 5 pF .
- When you select Exponential for the Diode model parameter, the Junction capacitance parameter lets you select one of the following options for modeling the junction capacitance:
- Include fixed or zero junction capacitance - Model the junction capacitance as a fixed value.
- Use C-V curve data points - Specify measured data at three points on the diode C-V curve.
- Use parameters CJO, VJ, M \& FC - Specify zero-bias junction capacitance, junction potential, grading coefficient, and forward-bias depletion capacitance coefficient.

Zero-bias junction capacitance CJ0

The value of the capacitance placed in parallel with the exponential diode term. This parameter is only visible when you select Exponential for the Diode model parameter and Include fixed or zero junction capacitance or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 5 pF .

Reverse bias voltages [VR1 VR2 VR3]

A vector of the reverse bias voltage values at the three points on the diode C-V curve that the block uses to calculate CJO, VJ, and M. This parameter is only visible when you select Exponential for the Diode model parameter and Use C-V curve data points for the Junction capacitance parameter. The default value is [0.110100] V.

Corresponding capacitances [C1 C2 C3]

A vector of the capacitance values at the three points on the diode C-V curve that the block uses to calculate CJO, VJ, and M. This parameter is only visible when you select Exponential for the Diode model parameter and Use C-V curve data points for the Junction capacitance parameter. The default value is [3.510 .4] pF.

Diode

Junction potential VJ

The junction potential. This parameter is only visible when you select Exponential for the Diode model parameter and Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 1 V .

Grading coefficient M

The grading coefficient. This parameter is only visible when you select Exponential for the Diode model parameter and Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

Capacitance coefficient FC

Fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Exponential for the Diode model parameter and Use C-V curve data points or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

Charge model

Select one of the following methods for charge dynamics parameterization:

- Do not model charge dynamics - Do not include charge dynamics modeling. This is the default method.
- Use peak reverse current and reverse recovery time Model charge dynamics by providing values for peak reverse current, I_{rrm}, and reverse recovery time, t_{rr}, plus information on the initial forward current and rate of change of current used in the test circuit when measuring I_{rrm} and t_{rr}. Use this option if the manufacturer datasheet does not provide values for transit time, $T T$, and carrier lifetime, τ.
- Use transit time and carrier lifetime - Model charge dynamics by providing values for transit time, $T T$, and carrier lifetime, τ.

Peak reverse current, Irrm

The peak reverse current measured in a test circuit. This parameter is only visible when you select Exponential for the Diode model parameter and Use peak reverse current and reverse recovery time for the Charge model parameter. The default value is 7.15 A .

Starting forward current when measuring Irrm

The initial forward current when measuring peak reverse current. This parameter is only visible when you select Exponential for the Diode model parameter and Use peak reverse current and reverse recovery time for the Charge model parameter. The default value is 4 A .

Rate of change of current when measuring Irrm

The rate of change of current when measuring peak reverse current. This parameter is only visible when you select Exponential for the Diode model parameter and Use peak reverse current and reverse recovery time for the Charge model parameter. The default value is $-750 \mathrm{~A} / \mathrm{us}$.

Reverse recovery time, trr
The time between the point where the current initially goes to zero when the diode turns off, and the point where the current falls to less than ten percent of the peak reverse current. This parameter is only visible when you select Exponential for the Diode model parameter and Use peak reverse current and reverse recovery time for the Charge model parameter. The default value is 115 ns .

Transit time, TT

A measure of how long it takes carriers to cross the diode junction. This parameter is only visible when you select Exponential for the Diode model parameter and Use transit time and carrier lifetime for the Charge model parameter. The default value is 50 ns .

Diode

Carrier lifetime, tau

A measure of how long it takes for the carriers to dissipate once the diode is no longer conducting. This parameter is only visible when you select Exponential for the Diode model parameter and Use transit time and carrier lifetime for the Charge model parameter. The default value is 100 ns .

Temperature Dependence Tab

This tab is applicable for Exponential diode models only.

Block Parameters: Diode
Diode
This block represents a diode. Use the Diode model parameter to select one of the following model types:
[1] Piecewise Linear Diode. This option invokes the diode model from the Simscape Foundation Library.
[2] Piecewise Linear Zener Diode (i.e. piecewise linear diode with reverse breakdown characteristics). This model is identical to the Piecewise Linear Diode for reverse voltages above the Reverse Breakdown Voltage Vz. For voltages below Vz the diode breaks down with a low corresponding Zener Resistance Rz.
[3] Exponential Diode. Uses the standard exponential diode equation $\mathrm{I}=\mathrm{Is} *\left(\exp \left(\mathrm{~V} /\left(\mathrm{N}^{*} \mathrm{~V} \mathrm{t}\right)\right)-1\right)$ where Is is the Saturation current, Vt is the thermal voltage, and N is the emission coefficient ($>=1$). Vt is given by $\mathrm{Vt}=\mathrm{k} * \mathrm{~T} / \mathrm{e}$ where k is Boltzmann's constant, T is the absolute Temperature of the $\mathrm{p}-\mathrm{n}$ junction, and e is the magnitude of charge on an electron.

Parameters

Main	Reverse Breakdown	Ohmic Resistance	Capacitance	Temperature Dependence
Parameterization:	None - Use characteristics at parameter measurement temperature			

Parameterization

Select one of the following methods for temperature dependence parameterization:

- None Simulate at parameter measurement temperature - Temperature dependence is not modeled, or the model is simulated at the measurement temperature $T_{\mathrm{m} 1}$ (as specified

Diode

by the Measurement temperature parameter on the Main tab). This is the default method.

- Use an I-V data point at second measurement temperature - If you select this option, you specify a second measurement temperature $T_{\mathrm{m} 2}$, and the current and voltage values at this temperature. The model uses these values, along with the parameter values at the first measurement temperature $T_{\mathrm{m} 1}$, to calculate the energy gap value.
- Specify saturation current at second measurement temperature - If you select this option, you specify a second measurement temperature $T_{\mathrm{m} 2}$, and saturation current value at this temperature. The model uses these values, along with the parameter values at the first measurement temperature $T_{\mathrm{m} 1}$, to calculate the energy gap value.
- Specify the energy gap, EG - Specify the energy gap value directly.

Current I1 at second measurement temperature

Specify the diode current $I 1$ value when the voltage is V1 at the second measurement temperature. This parameter is only visible when you select Use an I-V data point at second measurement temperature for the Parameterization parameter. The default value is 0.245 A .

Voltage V1 at second measurement temperature

Specify the diode voltage V1 value when the current is $I 1$ at the second measurement temperature. This parameter is only visible when you select Use an I-V data point at second measurement temperature for the Parameterization parameter. The default value is 0.5 V .

Saturation current, IS, at second measurement temperature Specify the saturation current $I S$ value at the second measurement temperature. This parameter is only visible when you select Specify saturation current at second measurement temperature for the Parameterization parameter. The default value is $1.25 \mathrm{e}-7 \mathrm{~A}$.

Second measurement temperature

Specify the value for the second measurement temperature. This parameter is only visible when you select either Use an I-V data point at second measurement temperature or Specify saturation current at second measurement temperature for the Parameterization parameter. The default value is 125 C .

Energy gap parameterization

This parameter is only visible when you select Specify the energy gap, EG for the Parameterization parameter. It lets you select a value for the energy gap from a list of predetermined options, or specify a custom value:

- Use nominal value for silicon (EG=1.11eV) - This is the default.
- Use nominal value for $4 \mathrm{H}-\mathrm{SiC}$ silicon carbide ($\mathrm{EG}=3.23 \mathrm{eV}$)
- Use nominal value for 6H-SiC silicon carbide ($\mathrm{EG}=3.00 \mathrm{eV}$)
- Use nominal value for germanium (EG=0.67eV)
- Use nominal value for gallium arsenide (EG=1.43eV)
- Use nominal value for selenium (EG=1.74eV)
- Use nominal value for Schottky barrier diodes (EG=0.69eV)
- Specify a custom value - If you select this option, the Energy gap, EG parameter appears in the dialog box, to let you specify a custom value for $E G$.

Energy gap, EG

Specify a custom value for the energy gap, $E G$. This parameter is only visible when you select Specify a custom value for the Energy gap parameterization parameter. The default value is 1.11 eV .

Diode

Saturation current temperature exponent parameterization

 Select one of the following options to specify the saturation current temperature exponent value:- Use nominal value for pn-junction diode (XTI=3) This is the default.
- Use nominal value for Schottky barrier diode (XTI=2)
- Specify a custom value - If you select this option, the Saturation current temperature exponent, XTI parameter appears in the dialog box, to let you specify a custom value for XTI.

Saturation current temperature exponent, XTI

Specify a custom value for the saturation current temperature exponent, XTI. This parameter is only visible when you select Specify a custom value for the Saturation current temperature exponent parameterization parameter. The default value is 3 .

Reverse breakdown voltage temperature coefficient, $\mathrm{dBV} / \mathrm{dT}$ This coefficient modulates the reverse breakdown voltage $B V$. If you define the reverse breakdown voltage $B V$ as a positive quantity, a positive value for $T C V$ implies that the magnitude of the reverse breakdown voltage decreases with temperature. The default value is $0 \mathrm{~V} / \mathrm{K}$.

Device simulation temperature

Specify the value for the temperature T_{s}, at which the device is to be simulated. The default value is 25 C .

Ports The block has the following ports:
$+$
Electrical conserving port associated with the diode positive terminal.

Electrical conserving port associated with the diode negative terminal.

References [1] MH. Ahmed and P.J. Spreadbury. Analogue and digital electronics for engineers. 2nd Edition, Cambridge University Press, 1984.
[2] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.
[3] Lauritzen, P.O. and C.L. Ma. "A Simple Diode Model with Reverse Recovery." IEEE ${ }^{\circledR}$ Transactions on Power Electronics. Vol. 6, No. 2, April 1991.

See Also Simscape Diode, SPICE Diode

DPDT Switch

Purpose Model double-pole double-throw switch
Library
Passive Devices/Switches
Description
The DPDT Switch block models a double-pole double-throw switch:

- When the switch is closed, ports c1 and c2 are connected to ports s12 and s22, respectively.
- When the switch is open, ports c1 and c2 are connected to ports s11 and s21, respectively.

Closed connections are modeled by a resistor with value equal to the Closed resistance parameter value. Open connections are modeled by a resistor with value equal to the reciprocal of the Open conductance parameter value.

The switch is closed if the voltage presented at the vT control port exceeds the value of the Threshold parameter.

Optionally, you can add a delay between the point at which the voltage at vT passes the threshold and the switch opening or closing. To enable the delay, on the Dynamics tab, set the Model dynamics parameter to Model turn-on and turn-off times.

- "Main Tab" on page 1-143
- "Dynamics Tab" on page 1-144

Main Tab

Block Parameters: DPDT Switch

DPDT Switch

The block represents a Double-Pole Double-Throw (DPDT) switch controlled by an external control signal vT. is greater than the threshold, then the switch is closed, otherwise the switch is open.

Parameters

Main Dynamics
Closed resistance:
Open conductance:

0.01
$1 \mathrm{e}-6$

Ohm
S
Threshold:
0
V

Closed resistance
Resistance between the cand selectrical ports when the switch is closed. The value must be greater than zero. The default value is 0.01Ω.

Open conductance

Conductance between the c and s electrical ports when the switch is open. The value must be greater than zero. The default value is $1 \mathrm{e}-6 \mathrm{~S}$.

DPDT Switch

Threshold

The threshold voltage for the control physical signal input vT above which the switch will turn on. The default value is 0 V .

Dynamics Tab

Block Parameters: DPDT Switch

DPDT Switch

The block represents a Double-Pole Double-Throw (DPDT) switch controlled by an external control signal vT. If v7 is greater than the threshold, then the switch is closed, otherwise the switch is open.

Parameters

Main Dynamics
Model dynamics:
No dynamics

Model dynamics

Select whether the block models a switching delay:

- No dynamics - Do not model the delay. This is the default option.
- Model turn-on and turn-off times - Use additional parameters to model a delay between the point at which the voltage at vT passes the threshold and the switch opening or closing.

Turn-on delay

Time between the input voltage exceeding the threshold voltage and the switch closing. This parameter is only visible when you select Model turn-on and turn-off times for the Model dynamics parameter. The value must be greater than zero. The default value is $1 e-3$ seconds.

Turn-off delay

Time between the input voltage falling below the threshold voltage and the switch opening. This parameter is only visible when you select Model turn-on and turn-off times for the Model dynamics parameter. The value must be greater than zero. The default value is $1 e-3$ seconds.

Initial input value, vT

The value of the physical signal input vT at time zero. This value is used to initialize the delayed control voltage parameter internally. This parameter is only visible when you select Model turn-on and turn-off times for the Model dynamics parameter. The default value is 0 V .

Ports This block has the following ports:
vT
Physical signal that opens and closes the switch.
c1, c2, s11, s12, s21, s22
Electrical conserving ports.

See Also DPST Switch
SPDT Switch
SPST Switch
Simscape Switch

DPST Switch

Purpose Model double-pole single-throw switch

Library

Passive Devices/Switches
Description The DPST Switch block models a double-pole single-throw switch.
 When the switch is closed, ports c1 and c2 are connected to ports s1 and s2, respectively.

Closed connections are modeled by a resistor with value equal to the Closed resistance parameter value. Open connections are modeled by a resistor with value equal to the reciprocal of the Open conductance parameter value.

The switch is closed if the voltage presented at the vT control port exceeds the value of the Threshold parameter.

Optionally, you can add a delay between the point at which the voltage at $v T$ passes the threshold and the switch opening or closing. To enable the delay, on the Dynamics tab, set the Model dynamics parameter to Model turn-on and turn-off times.

DPST Switch

Dialog
Box and
Parameters

- "Main Tab" on page 1-147
- "Dynamics Tab" on page 1-148

Main Tab

Block Parameters: DPST Switch

DPST Switch

The block represents a Double-Pole Single-Throw (DPST) switch controlled by an external control signal vT. . is greater than the threshold, then the switch is closed, otherwise the switch is open.

Parameters

Main Dynamics
Closed resistance:
Open conductance:

0.01
$1 \mathrm{e}-6$

Ohm
S
Threshold:
0
V

Closed resistance
Resistance between the cand s electrical ports when the switch is closed. The value must be greater than zero. The default value is 0.01Ω.

Open conductance

Conductance between the c and s electrical ports when the switch is open. The value must be greater than zero. The default value is $1 \mathrm{e}-6 \mathrm{~S}$.

DPST Switch

Threshold

The threshold voltage for the control physical signal input vT above which the switch will turn on. The default value is 0 V .

Dynamics Tab

Block Parameters: DPST Switch
DPST Switch
The block represents a Double-Pole Single-Throw (DPST) switch controlled by an external control signal vT. If vT is greater than the threshold, then the switch is closed, otherwise the switch is open.

Parameters

Main Dynamics
Model dynamics:
No dynamics

Model dynamics

Select whether the block models a switching delay:

- No dynamics - Do not model the delay. This is the default option.
- Model turn-on and turn-off times - Use additional parameters to model a delay between the point at which the voltage at vT passes the threshold and the switch opening or closing.

Turn-on delay

Time between the input voltage exceeding the threshold voltage and the switch closing. This parameter is only visible when you select Model turn-on and turn-off times for the Model dynamics parameter. The value must be greater than zero. The default value is $1 e-3$ seconds.

Turn-off delay

Time between the input voltage falling below the threshold voltage and the switch opening. This parameter is only visible when you select Model turn-on and turn-off times for the Model dynamics parameter. The value must be greater than zero. The default value is $1 e-3$ seconds.

Initial input value, vT

The value of the physical signal input vT at time zero. This value is used to initialize the delayed control voltage parameter internally. This parameter is only visible when you select Model turn-on and turn-off times for the Model dynamics parameter. The default value is 0 V .

Ports This block has the following ports:
vT
Physical signal that opens and closes the switch.
c1, c2, s1, s2
Electrical conserving ports.

See Also DPDT Switch
SPDT Switch
SPST Switch
Simscape Switch

Exponential Current Source

Purpose Model exponential pulse current source
Library
SPICE-Compatible Components/Sources
Description The Exponential Current Source block represents a current source whose output current value is an exponential pulse as a function of time and is independent of the voltage across the terminals of the source. The following equations describe the current through the source as a function of time:

$$
\begin{aligned}
& \left.I_{\text {out }}(0 \leq \text { Time } \leq T D R)\right)=I 1 \\
& I_{\text {out }}(T D R<\text { Time } \leq T D F)=I 1+(I 2-I 1) *\left(1-e^{-(T i m e-T D R) / T R}\right) \\
& I_{\text {out }}(T D F<\text { Time })=I 1+(I 2-I 1) *\left(e^{-(T i m e-T D F) / T F}-e^{-(T i m e-T D R) / T R}\right)
\end{aligned}
$$

where:

- $I 1$ is the Initial value, I1 parameter value.
- I2 is the Pulse value, I2 parameter value.
- $T D R$ is the Rise delay time, TDR parameter value.
- $T R$ is the Rise time, TR parameter value.
- TDF is the Fall delay time, TDF parameter value.
- $T F$ is the Fall time, TF parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the + and - ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.

Exponential Current Source

Dialog Box and Parameters

- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

Initial value, I1

The value of the output current at time zero. The default value is 0 A .

Exponential Current Source

Pulse value, I2
The asymptotic value of the output current when the output is high. The default value is 0 A .

Rise delay time, TDR
The rise time delay. The default value is 0 s .
Rise time, TR
The time it takes the output current to rise from the Initial Value, I1 value to the Pulse Value, $\mathbf{I 2}$ value. The default value is $1 \mathrm{e}-09 \mathrm{~s}$. The value must be greater than 0 .

Fall delay time, TDR
The fall time delay. The default value is 0 s , which differs from the SPICE default value.

Fall time, TF

The time it takes the output current to fall from the Pulse value, $\mathbf{I} 2$ value to the Initial value, I1 value. The default value is 1e-09 s . The value must be greater than 0 .

Ports The block has the following ports:
> $+$
> Positive electrical voltage.

> Negative electrical voltage.

See Also
Exponential Voltage Source

Exponential Voltage Source

Purpose

Model exponential pulse voltage source

Library

Description

SPICE-Compatible Components/Sources equations describe the output current as a function of time:

The Exponential Voltage Source block represents a voltage source whose output voltage value is an exponential pulse as a function of time and is independent of the current through the source. The following

$$
\begin{aligned}
& \left.V_{\text {out }}(0 \leq \text { Time } \leq T D R)\right)=V 1 \\
& V_{\text {out }}(T D R<\text { Time } \leq T D F)=V 1+(V 2-V 1) *\left(1-e^{-(T i m e-T D R) / T R}\right) \\
& V_{\text {out }}(T D F<\text { Time })=V 1+(V 2-V 1) *\left(e^{-(T i m e-T D F) T F}-e^{-(T i m e-T D R) / T R}\right)
\end{aligned}
$$

where:

- $V 1$ is the Initial value, V1 parameter value.
- V2 is the Pulse value, V2 parameter value.
- $T D R$ is the Rise delay time, TDR parameter value.
- $T R$ is the Rise time, TR parameter value.
- TDF is the Fall delay time, TDF parameter value.
- $T F$ is the Fall time, TF parameter value.

Exponential Voltage Source

Dialog
 Box and Parameters

XThe Exponential Voltage Source block maintains an exponential voltage across its terminals, independent of the current through its terminals. The following equations describe the voltage across the exponential source as a function of time:
$\operatorname{Vout}(0<=$ Time $<=T D R)=V_{1}$
$\operatorname{Vout}(T D R<T i m e<=T D F)=V 1+(V 2-V 1)^{*}(1-\exp (-(T i m e-T D R) / T R))$
Vout $(T D F<T i m e)=V 1+(V 2-V 1)^{*}(1-\exp (-($ Time-TDR $) / T R))+(V 1-V 2)^{*}(1-\exp (-($ TimeTDF)/TF))
TR is the rise time. TF is the fall time. TDR is the rise time delay. TDF is the fall time delay. The default values for TR, TF and TDF differ from SPICE. The default rise and fall times are one nanosecond ($1 \mathrm{e}-9$), and the values of TR and TF must be greater than zero. The default value for the fall delay time is zero. If TDF is less than TDR, the middle equation above is not used.

```
O=Block Parameters: Exponential Voltage Source
O=Block Parameters: Exponential Voltage Source
Exponential Voltage Source
Exponential Voltage Source


\section*{Initial value, V1}

The value of the output voltage at time zero. The default value is 0 V .

\section*{Pulse value, V2}

The asymptotic value of the output voltage when the output is high. The default value is 0 V .

\section*{Exponential Voltage Source}

\section*{Rise delay time, TDR}

The rise time delay. The default value is 0 s .

\section*{Rise time, TR}

The time it takes the output voltage to rise from the Initial value, \(\mathbf{I} 1\) value to the Pulse value, \(\mathbf{I 2}\) value. The default value is \(1 \mathrm{e}-09 \mathrm{~s}\). The value must be greater than 0 .

\section*{Fall delay time, TDR}

The fall time delay. The default value is 0 s .

\section*{Fall Time, TF}

The time it takes the output voltage to fall from the Pulse value, I2 value to the Initial value, I1 value. The default value is 1e-09 \(s\). The value must be greater than 0 .

Ports The block has the following ports:

Positive electrical voltage.

Negative electrical voltage.
See Also Exponential Current Source

\section*{FEM-Parameterized Linear Actuator}

\section*{Purpose Model linear actuator defined in terms of magnetic flux \\ Library \\ Translational Actuators}

Description


The FEM-Parameterized Linear Actuator block implements a model of a linear actuator defined in terms of magnetic flux. Use this block to model custom solenoids and linear motors where magnetic flux depends on both distance and current. You parameterize the block using data from a third party Finite Element Magnetic (FEM) package.

The block has two options for the electrical equation. The first, Define in terms of \(\mathrm{dPhi}(i, x) / d x\) and \(d P h i(i, x) / d i\), defines the current in terms of partial derivatives of the magnetic flux \((\Phi)\) with respect to distance \((x)\) and current ( \(i\) ), the equations for which are:
\[
\frac{d i}{d t}=\left(v-i R-\frac{\partial \Phi}{\partial x} \frac{d x}{d t}\right) / \frac{\partial \Phi}{\partial i}
\]

The second option, Define in terms of Phi(i,x), defines the voltage across the component directly in terms of the flux, the equation for which is:
\[
v=i R+\frac{d}{d t} \Phi(x, i)
\]

Numerically, defining the electrical equation in terms of flux partial derivatives is better because the back-emf is piecewise continuous. If using the flux directly, using a finer grid size for current and position will improve results, as will selecting cubic or spline interpolation.

In both cases, you specify the force as a function of current and position. If the finite element package does not provide force, then you can calculate it from the flux using the following equation:
\[
F=\int_{0}^{i} \frac{\partial \Phi(x, i)}{\partial x} d i
\]

\section*{FEM-Parameterized Linear Actuator}

See the Finite Element Parameterized Solenoid example for more information on how to use this and other parameterization options.

You can define \(\Phi\) and its partial derivatives for just positive, or positive and negative currents. If defining for just positive currents, then the block assumes that \(\Phi(-i, x)=-\Phi(i, x)\). Therefore, if the current vector is positive only:
- The first current value must be zero.
- The flux corresponding to zero current must be zero.
- The partial derivative of flux with respect to displacement must be zero for zero current.

To model a linear motor with a repeated flux pattern, set the Flux dependence on displacement parameter to Cyclic. When selecting this option, the force and flux (or force and flux partial derivatives depending on the option chosen) must have identical first and last columns.

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Temperature Dependence and Thermal port tabs to the block dialog box.

Use the thermal port to simulate the effects of copper resistance losses that convert electrical power to heat. For more information on using thermal ports and on the Temperature Dependence and Thermal port tab parameters, see "Simulating Thermal Effects in Rotational and Translational Actuators".

\section*{FEM-Parameterized Linear Actuator}

> Basic
> Assumptions and Limitations

This block has the following limitations:
- It is imperative that you supply a consistent set of force and flux data. There is no checking that the force matrix is consistent with the flux data.
- When driving the FEM-Parameterized Linear Actuator block via a series inductor, you may need to include a parallel conductance in the inductor component.

\section*{Dialog Box and Parameters}

\section*{Magnetic Force Tab}


\section*{Electrical model}

Select one of the following parameterization options, based on the underlying electrical model:

\section*{FEM-Parameterized Linear Actuator}
- Define in terms of dPhi(i,x)/dx and dPhi(i,x)/di - Define the current through the block in terms of partial derivatives of the magnetic flux with respect to distance and current. This is the default method.
- Define in terms of Phi(i,x) - Define the voltage across the block terminals directly in terms of the flux.

\section*{Current vector, i}

Specify a vector of monotonically increasing current values corresponding to your force-flux data. If you specify positive currents only, the first element must be zero. The default value is


\section*{Displacement vector, \(x\)}

Specify a vector of monotonically increasing displacement values corresponding to your force-flux data. The default value is [ 0 \(0.050 .10 .150 .2 \mathrm{~J} \mathrm{~m} / \mathrm{m}\).

\section*{Flux partial derivative wrt current, Phi(i,x)/di}

Specify a matrix of the flux partial derivatives with respect to current. This parameter is used if Electrical model is set to Define in terms of \(d P h i(i, x) / d x\) and \(d P h i(i, x) / d i\). The default value, in \(\mathrm{Wb} / \mathrm{A}\), is:
```

[0.104 0.098 0.091 0.085 0.078;
0.095 0.089 0.084 0.079 0.073;
0.085 0.081 0.077 0.073 0.069;
0.076 0.073 0.07 0.067 0.064;
0.067 0.065 0.063 0.061 0.06;
0.057 0.057 0.056 0.056 0.055;
0.048 0.049 0.049 0.05 0.05;
0.038 0.04 0.042 0.044 0.046;
0.029 0.032 0.035 0.038 0.041;
0.02 0.024 0.028 0.033 0.037;
0.01 0.016 0.021 0.027 0.032]

```

Flux partial derivative wrt displacement, \(\operatorname{Phi}(\mathbf{i}, \mathbf{x}) / \mathbf{d x}\)
Specify a matrix of the flux partial derivatives with respect to displacement. This parameter is used if Electrical model is set to Define in terms of dPhi(i,x)/dx and dPhi(i,x)/di. The default value, in \(\mathrm{Wb} / \mathrm{m}\), is:
```

[0 0 0 0 0;
-11.94 -10.57 -9.19 -7.81 -6.43;
-21.17 -19.92 -18.67 -17.42 -16.16;
-27.99 -26.87 -25.75 -24.62 -23.5;
-32.42 -31.43 -30.43 -29.43 -28.44;
-34.46 -33.59 -32.72 -31.85 -30.98;
-34.09 -33.35 -32.61 -31.87 -31.12;
-31.33 -30.72 -30.1 -29.49 -28.87;
-26.17 -25.68 -25.2 -24.71 -24.22;
-18.62 -18.26 -17.9 -17.54 -17.18;
-8.66 -8.43 -8.2 -7.97 -7.73]

```

\section*{Flux linkage matrix, Phi(i,x)}

Specify a matrix of the total flux linkage, that is, flux times the number of turns. This parameter is used if Electrical model is set to Define in terms of \(\operatorname{Phi}(i, x)\). The default value, in Wb , is:
```

[0 0 0 0 0;
0.0085 0.0079 0.0075 0.0071 0.0067;
0.0171 0.016 0.0151 0.0143 0.0137;
0.0254 0.0239 0.0226 0.0215 0.0206;
0.033 0.0312 0.0297 0.0283 0.0271;
0.0396 0.0377 0.036 0.0345 0.0331;
0.0452 0.0433 0.0415 0.0399 0.0384;
0.0495 0.0478 0.0461 0.0446 0.0431;
0.0526 0.0512 0.0498 0.0485 0.0472;
0.0545 0.0537 0.0528 0.0519 0.0508;
0.0554 0.0553 0.0551 0.0548 0.0542]

```

\section*{FEM-Parameterized Linear Actuator}

Force matrix, \(\mathbf{F}(\mathbf{i}, \mathbf{x})\)
Specify a matrix of the electromagnetic force applied to the plunger or moving part. The default value, in N , is:
[ \(00000 ;\)
-0.6-0.5 -0.4-0.3-0.3;
\(-2.3-2-1.7-1.4-1.2 ;\)
\(-4.9-4.3-3.7-3.2-2.7 ;\)
-8.3 -7.3 -6.4 -5.5 -4.7;
-12.2 -10.7 -9.4 -8.2 -7.2;
\(-16.2-14.4-12.7-11.3-10 ;\)
-20 -17.9 -15.9 -14.3 -12.9;
-23.3-20.9 -18.8 -17.1 -15.7;
-25.7-23.1 \(-21.1-19.4-18.2\);
\(-26.5-24.1-22.2-20.9-20.1]\)

Flux dependence on displacement
Specify the flux pattern:
- Unique - No flux pattern present. This is the default option.
- Cyclic - Select this option to model a linear motor with a repeated flux pattern. The force and flux (or force and flux partial derivatives, depending on the Electrical model option chosen) must have identical first and last columns.

\section*{Interpolation method}

Select one of the following interpolation methods for approximating the output value when the input value is between two consecutive grid points:
- Linear - Uses a bilinear interpolation algorithm, which is an extension of linear interpolation for functions in two variables.
- Cubic - Uses the bicubic interpolation algorithm.
- Spline - Uses the bicubic spline interpolation algorithm.

For more information on interpolation algorithms, see the PS Lookup Table (2D) block reference page.

\section*{FEM-Parameterized Linear Actuator}

\section*{Extrapolation method}

Select one of the following extrapolation methods for determining the output value when the input value is outside the range specified in the argument list:
- From last 2 points - Extrapolates using the linear method (regardless of the interpolation method specified), based on the last two output values at the appropriate end of the range. That is, the block uses the first and second specified output values if the input value is below the specified range, and the two last specified output values if the input value is above the specified range.
- From last point - Uses the last specified output value at the appropriate end of the range. That is, the block uses the last specified output value for all input values greater than the last specified input argument, and the first specified output value for all input values less than the first specified input argument.

For more information on extrapolation algorithms, see the PS Lookup Table (2D) block reference page.

This parameter is not available if you set the Flux dependence on displacement parameter to Cyclic.

\section*{Winding resistance}

Total resistance of the electrical winding. The default value is 14 Ohm.

\section*{FEM-Parameterized Linear Actuator}

\section*{Mechanical Tab}


\section*{Damping}

Linear damping. The default value is \(1 \mathrm{~N} /(\mathrm{m} / \mathrm{s})\). The value can be zero.

\section*{Plunger mass}

Mass of the moving part, which corresponds to mechanical translational port R . The default value is 0.05 kg . The value can be zero.

\section*{Minimum stroke}

The stroke at which the lower mechanical end stop is applied. The default value is 0 . The value can be - Inf.

\section*{FEM-Parameterized Linear Actuator}

\section*{Maximum stroke}

The stroke at which the upper mechanical end stop is applied. The default value is 0.2 mm . The value can be Inf.

\section*{Initial plunger position}

Position of the plunger at the start of the simulation. The default value is 0 mm .

\section*{Initial plunger velocity}

Speed of the plunger at the start of the simulation. The default value is \(0 \mathrm{~mm} / \mathrm{s}\).

\section*{Contact stiffness}

Contact stiffness between plunger and end stops. The default value is \(1 \mathrm{e} 8 \mathrm{~N} / \mathrm{m}\).

\section*{Contact damping}

Contact damping between plunger and end stops. The default value is \(1 \mathrm{e} 4 \mathrm{~N} /(\mathrm{m} / \mathrm{s})\).

Ports This block has the following ports:
\(+\)
Positive electrical conserving port.

Negative electrical conserving port.
C
Mechanical translational conserving port connected to the actuator case.

R
Mechanical translational conserving port connected to the plunger.

Examples The Finite Element Parameterized Solenoid example illustrates the use and parameterization options of this block.

See Also FEM-Parameterized Rotary Actuator and Solenoid.

\section*{Purpose}

Model rotary actuator defined in terms of magnetic flux

\section*{Library}

Description


Rotational Actuators
The FEM-Parameterized Rotary Actuator block implements a model of a rotary actuator defined in terms of magnetic flux. Use this block to model custom rotary actuators and motors where magnetic flux depends on both rotor angle and current. You parameterize the block using data from a third party Finite Element Magnetic (FEM) package.

The block has two options for the electrical equation. The first, Define in terms of dPhi(i,theta)/dtheta and dPhi(i,theta)/di, defines the current in terms of partial derivatives of the magnetic flux \((\Phi)\) with respect to rotor angle \((\theta)\) and current \((i)\), the equations for which are:
\[
\frac{d i}{d t}=\left(v-i R-\frac{\partial \Phi}{\partial \theta} \frac{d \theta}{d t}\right) / \frac{\partial \Phi}{\partial i}
\]

The second option, Define in terms of Phi(i, theta), defines the voltage across the component directly in terms of the flux, the equation for which is:
\[
v=i R+\frac{d}{d t} \Phi(\theta, i)
\]

Numerically, defining the electrical equation in terms of flux partial derivatives is better because the back-emf is piecewise continuous. If using the flux directly, using a finer grid size for current and position will improve results, as will selecting cubic or spline interpolation.
In both cases, you specify the torque as a function of current and rotor angle. If the finite element package does not provide torque, then you can calculate it from the flux using the following equation:
\[
T=\int_{0}^{i} \frac{\partial \Phi(\theta, i)}{\partial \theta} d i
\]

\section*{FEM-Parameterized Rotary Actuator}

See the Finite Element Parameterized Solenoid example model and its initialization file elec_fem_solenoid_ini.m for an example of how to implement this type of integration in MATLAB.

You can define \(\Phi\) and its partial derivatives for just positive, or positive and negative currents. If defining for just positive currents, then the block assumes that \(\Phi(-i, x)=-\Phi(i, x)\). Therefore, if the current vector is positive only:
- The first current value must be zero.
- The flux corresponding to zero current must be zero.
- The partial derivative of flux with respect to rotor angle must be zero for zero current.

To model a rotary motor with a repeated flux pattern, set the Flux dependence on displacement parameter to Cyclic. When selecting this option, the torque and flux (or torque and flux partial derivatives depending on the option chosen) must have identical first and last columns.

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Temperature Dependence and Thermal port tabs to the block dialog box.

Use the thermal port to simulate the effects of copper resistance losses that convert electrical power to heat. For more information on using thermal ports and on the Temperature Dependence and Thermal port tab parameters, see "Simulating Thermal Effects in Rotational and Translational Actuators".

\section*{FEM-Parameterized Rotary Actuator}

\section*{Basic \\ Assumptions and Limitations}

This block has the following limitations:
- It is imperative that you supply a consistent set of torque and flux data. There is no checking that the torque matrix is consistent with the flux data.
- When driving the FEM-Parameterized Rotary Actuator block via a series inductor, you may need to include a parallel conductance in the inductor component.

\section*{Dialog Box and Parameters}

Magnetic Force Tab


\section*{Electrical model}

Select one of the following parameterization options, based on the underlying electrical model:

\section*{FEM-Parameterized Rotary Actuator}
- Define in terms of dPhi(i,theta)/dtheta and dPhi(i, theta)/di - Define the current through the block in terms of partial derivatives of the magnetic flux with respect to rotor angle and current. This is the default method.
- Define in terms of Phi(i,theta) - Define the voltage across the block terminals directly in terms of the flux.

\section*{Current vector, i}

Specify a vector of monotonically increasing current values corresponding to your torque-flux data. If you specify positive currents only, the first element must be zero. The default value is [ 00.20 .40 .60 .81\(]\) A.

\section*{Angle vector, theta}

Specify a vector of monotonically increasing rotor angle values corresponding to your torque-flux data. The default value is [ 0 102030405060708090100110120130140150160 170180 ] deg.

Flux partial derivative wrt current, Phi(i,theta)/di
Specify a matrix of the flux partial derivatives with respect to current. This parameter is used if Electrical model is set to Define in terms of dPhi(i,theta)/dtheta and dPhi(i, theta)/di. The default value, in Wb/A, is:
```

[0.002 0.0024 0.0035 0.0052 0.0074 0.0096 0.0118 0.0135 0.0146 ...
0.015 0.0146 0.0135 0.0118 0.0096 0.0074 0.0052 0.0035 0.0024 0.002;
0.002 0.0024 0.0035 0.0052 0.0074 0.0096 0.0118 0.0135 0.0146 ...
0.015 0.0146 0.0135 0.0118 0.0096 0.0074 0.0052 0.0035 0.0024 0.002;
0.002 0.0024 0.0035 0.0052 0.0074 0.0096 0.0118 0.0135 0.0146 ···
0.015 0.0146 0.0135 0.0118 0.0096 0.0074 0.0052 0.0035 0.0024 0.002;
0.002 0.0024 0.0035 0.0052 0.0074 0.0096 0.0118 0.0135 0.0146 ···
0.015 0.0146 0.0135 0.0118 0.0096 0.0074 0.0052 0.0035 0.0024 0.002;
0.002 0.0024 0.0035 0.0052 0.0074 0.0096 0.0118 0.0135 0.0146 ···.
0.015 0.0146 0.0135 0.0118 0.0096 0.0074 0.0052 0.0035 0.0024 0.002;
0.002 0.0024 0.0035 0.0052 0.0074 0.0096 0.0118 0.0135 0.0146 ...
0.015 0.0146 0.0135 0.0118 0.0096 0.0074 0.0052 0.0035 0.0024 0.002;]

```

\section*{FEM-Parameterized Rotary Actuator}

\section*{Flux partial derivative wrt angle, Phi(i,theta)/dtheta} Specify a matrix of the flux partial derivatives with respect to rotor angle. This parameter is used if Electrical model is set to Define in terms of dPhi(i,theta)/dtheta and dPhi(i,theta)/di. The default value, in Wb/rad, is:
```

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 9e-4 0.0017 0.0023 0.0026 0.0026 0.0023 0.0017 9e-4 ...
0-9e-4 -0.0017 -0.0023 -0.0026 -0.0026 -0.0023 -0.0017 -9e-4 0;
0 0.0018 0.0033 0.0045 0.0051 0.0051 0.0045 0.0033 0.0018 ...
0-0.0018 -0.0033 -0.0045-0.0051 -0.0051 -0.0045 -0.0033-0.0018 0;
0 0.0027 0.005 0.0068 0.0077 0.0077 0.0068 0.005 0.0027 ...
0-0.0027 -0.005 -0.0068 -0.0077 -0.0077 -0.0068 -0.005 -0.0027 0;
0 0.0036 0.0067 0.009 0.0102 0.0102 0.009 0.0067 0.0036 ...
0 -0.0036 -0.0067 -0.009 -0.0102 -0.0102 -0.009 -0.0067 -0.0036 0;
0 0.0044 0.0084 0.0113 0.0128 0.0128 0.0113 0.0084 0.0044 ...
0 -0.0044 -0.0084 -0.0113 -0.0128 -0.0128 -0.0113 -0.0084 -0.0044 0]

```

\section*{Flux linkage matrix, Phi(i,theta)}

Specify a matrix of the total flux linkage, that is, flux times the number of turns. This parameter is used if Electrical model is set to Define in terms of Phi(i,theta). The default value, in Wb , is:
```

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
4e-4 4.8e-4 7e-4 0.00105 0.00147 0.00193 0.00235 0.0027 0.00292 ...
0.003 0.00292 0.0027 0.00235 0.00193 0.00147 0.00105 7e-4 4.8e-4 4e-4;
8e-4 9.6e-4 0.00141 0.0021 0.00295 0.00385 0.0047 0.00539 0.00584 ...
0.006 0.00584 0.00539 0.0047 0.00385 0.00295 0.0021 0.00141 9.6e-4 8e-4;
0.0012 0.00144 0.00211 0.00315 0.00442 0.00578 0.00705 0.00809 0.00876 ...
0.009 0.00876 0.00809 0.00705 0.00578 0.00442 0.00315 0.00211 0.00144 0.0012;
0.0016 0.00191 0.00282 0.0042 0.0059 0.0077 0.0094 0.01078 0.01169 ...
0.012 0.01169 0.01078 0.0094 0.0077 0.0059 0.0042 0.00282 0.00191 0.0016;
0.002 0.00239 0.00352 0.00525 0.00737 0.00963 0.01175 0.01348 0.01461 ...
0.015 0.01461 0.01348 0.01175 0.00963 0.00737 0.00525 0.00352 0.00239 0.002]

```

\section*{FEM-Parameterized Rotary Actuator}

\section*{Torque matrix, \(T(i\), theta)}

Specify a matrix of the electromagnetic torque applied to the rotor. The default value, in \(\mathrm{mN} * \mathrm{~m}\), is:
```

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0.0889 0.1671 0.2252 0.2561 0.2561 0.2252 0.1671 0.0889 ...
0 -0.0889 -0.1671 -0.2252 -0.2561 -0.2561 -0.2252 -0.1671 -0.0889 0;
0 0.3557 0.6685 0.9007 1.0242 1.0242 0.9007 0.6685 0.3557 ...
0-0.3557 -0.6685 -0.9007-1.0242 -1.0242 -0.9007 -0.6685 -0.3557 0;
0 0.8003 1.5041 2.0265 2.3045 2.3045 2.0265 1.5041 0.8003 ...
0-0.8003 -1.5041-2.0265 -2.3045 -2.3045 -2.0265 -1.5041 -0.8003 0;
0 1.4228 2.674 3.6027 4.0968 4.0968 3.6027 2.674 1.4228 ···..
0-1.4228 -2.674 -3.6027 -4.0968 -4.0968 -3.6027 -2.674 -1.4228 0;
0 2.2231 4.1781 5.6292 6.4013 6.4013 5.6292 4.1781 2.2231 ...
0 -2.2231 -4.1781 -5.6292 -6.4013 -6.4013 -5.6292 -4.1781 -2.2231 0]

```

Flux dependence on displacement
Specify the flux pattern:
- Unique - No flux pattern present. This is the default option.
- Cyclic - Select this option to model a rotary motor with a repeated flux pattern. The torque and flux (or torque and flux partial derivatives, depending on the Electrical model option chosen) must have identical first and last columns.

\section*{Interpolation method}

Select one of the following interpolation methods for approximating the output value when the input value is between two consecutive grid points:
- Linear - Uses a bilinear interpolation algorithm, which is an extension of linear interpolation for functions in two variables.
- Cubic - Uses the bicubic interpolation algorithm.
- Spline - Uses the bicubic spline interpolation algorithm.

For more information on interpolation algorithms, see the PS Lookup Table (2D) block reference page.

\section*{FEM-Parameterized Rotary Actuator}

\section*{Extrapolation method}

Select one of the following extrapolation methods for determining the output value when the input value is outside the range specified in the argument list:
- From last 2 points - Extrapolates using the linear method (regardless of the interpolation method specified), based on the last two output values at the appropriate end of the range. That is, the block uses the first and second specified output values if the input value is below the specified range, and the two last specified output values if the input value is above the specified range.
- From last point - Uses the last specified output value at the appropriate end of the range. That is, the block uses the last specified output value for all input values greater than the last specified input argument, and the first specified output value for all input values less than the first specified input argument.

For more information on extrapolation algorithms, see the PS Lookup Table (2D) block reference page.

This parameter is not available if you set the Flux dependence on displacement parameter to Cyclic.

\section*{Winding resistance}

Total resistance of the electrical winding. The default value is 10 Ohm.

\section*{FEM-Parameterized Rotary Actuator}

\section*{Mechanical Tab}


\section*{Damping}

Rotary damping. The default value is \(1 \mathrm{e}-4 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\). The value can be zero.

\section*{Rotor inertia}

Inertia of the rotor attached to mechanical translational port \(R\).
The default value is \(5 \mathrm{e}-5 \mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2\). The value can be zero.

\section*{Minimum rotor angle}

The rotor angle at which the lower mechanical end stop is applied.
The default value is - Inf.

\section*{Maximum rotor angle}

The rotor angle at which the upper mechanical end stop is applied.
The default value is Inf.

\section*{FEM-Parameterized Rotary Actuator}

\section*{Initial rotor position}

Position of the rotor at the start of the simulation. The default value is 0 deg.

\section*{Initial rotor velocity}

Angular velocity of the rotor at the start of the simulation. The default value is \(0 \mathrm{deg} / \mathrm{s}\).

\section*{Contact stiffness}

Contact stiffness between rotor and end stops. The default value is \(1 \mathrm{e} 8 \mathrm{~N} * \mathrm{~m} / \mathrm{rad}\).

\section*{Contact damping}

Contact damping between rotor and end stops. The default value is \(1 \mathrm{e} 4 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Ports This block has the following ports:}
\(+\)
Positive electrical conserving port.

Negative electrical conserving port.
C
Mechanical rotational conserving port connected to the actuator case.

R
Mechanical rotational conserving port connected to the rotor.
See Also FEM-Parameterized Linear Actuator and Solenoid.

\section*{Purpose Model gain-limited operational amplifier}

\section*{Library}

Integrated Circuits

\section*{Description The Finite-Gain Op-Amp block models a gain-limited operational} amplifier. If the voltages at the positive and negative ports are \(V p\) and \(V m\), respectively, the output voltage is:
\[
V_{\text {out }}=A\left(V_{p}-V_{m}\right)-I_{\text {out }} * R_{\text {out }}
\]
where:
- \(A\) is the gain.
- \(R_{\text {out }}\) is the output resistance.
- \(I_{o u t}\) is the output current.

The input current is:
\[
\frac{V_{p}-V_{m}}{R_{i n}}
\]
where \(R_{i n}\) is the input resistance.
The output voltage is limited by the minimum and maximum output values you specify in the block dialog box.

\section*{Finite-Gain Op-Amp}

\section*{Dialog Box and Parameters}


Gain, A
The open-loop gain of the operational amplifier. The default value is 1000 .

\section*{Input resistance, Rin}

The resistance at the input of the operational amplifier that the block uses to calculate the input current. The default value is \(1 \mathrm{e}+06 \Omega\).

\section*{Output resistance, Rout}

The resistance at the output of the operational amplifier that the block uses to calculate the drop in output voltage due to output current. The default value is \(100 \Omega\).

\section*{Minimum output, Vmin}

The lower limit on the operational amplifier output voltage. The default value is -15 V .

\section*{Maximum output, Vmax}

The upper limit on the operational amplifier output voltage. The default value is 15 V .

\section*{Ports}

The block has the following ports:
\(+\)
Positive electrical voltage.

Negative electrical voltage.
OUT
Output voltage.

Simscape Op-Amp, Band-Limited Op-Amp, Fully Differential Op-Amp

\section*{Purpose}

\section*{Library}

Description


Model operational amplifier with fully differential output, that is, not referenced to ground

Integrated Circuits
The Fully Differential Op-Amp block models a fully differential operational amplifier. Differential signal transmission is better than single-ended transmission due to reduced susceptibility to external noise sources. Applications include data acquisition where inputs are differential, for example, sigma-delta converters.

The following diagram shows the internal representation of the amplifier.


Parameters for the circuit components are derived from the block parameters that you provide. The gain of the two voltage-controlled voltage sources (VCVS1 and VCVS2) is set to half of the differential

\section*{Fully Differential Op-Amp}
gain value. Similarly the slew rate of each of the voltage sources is set to half of the differential maximum slew rate value. The voltages of the two output ports Vout+ and Vout - are both limited to be within the minimum and maximum output voltages that you specify.

The output voltage for zero differential input voltage is controlled by the common-mode port, cm. If no current is drawn from the cm port by the external circuit, then the output voltage is set to be the average of the positive and negative supply voltages by the resistor ladder of R3a and R3b. Note that the negative supply voltage can be zero, which corresponds to operation when a split supply is not available. The values for the minimum and maximum output voltages that you provide must be consistent with the values for the supply voltages that you provide. So, for example, the maximum output high voltage will be less than the positive supply voltage, the difference corresponding to the number of p-n junction voltage drops in the circuit.

Note Physical Network block diagrams do not allow unconnected Conserving ports. If you want to leave pin cm open-circuit, connect it to an Open Circuit block from the Simscape Foundation library.

\section*{Basic Assumptions and Limitations}

This block provides a behavioral model of a fully differential operational amplifier. It does not represent nonlinear effects, such as variation in gain with output voltage amplitude, and the nonlinear nature of the output voltage-current relationship for large load currents.

\title{
Fully Differential Op-Amp
}

\section*{Dialog Gain Tab Box and Parameters}

\section*{Block Parameters: Fully Differential Op-Amp}

Fully Differential Op-Amp
This block models a fully differential op-amp. The output common-mode voltage is controlled by the common-mode port cm . Internal resistors set the nominal output common-mode voltage to be midway between the values you provide for the positive and negative supply voltages. Consult the block reference documentation for an op-amp model equivalent circuit.

The Initial differential output voltage does not take account of the voltage drop due to the output resistance. The initial condition is not used if you select the Start simulation from steady state option in the Solver Configuration block.

Parameters
\begin{tabular}{|l|l|c|c|c|}
\hline Gain & Input Impedance & Output Limits & Output Bias & Initial Conditions \\
\hline Differential gain: & 1000 & & \\
Bandwidth: & 1.5 & & GHz \\
& & & \\
\hline
\end{tabular}

\section*{Differential gain}

The gain applied to a voltage difference between the + and inputs. The default value is 1000 .

\section*{Bandwidth}

The frequency at which the differential voltage gain drops by 3 dB from its dc value. The default value is 1.5 GHz .

\section*{Fully Differential Op-Amp}

\section*{Input Impedance Tab}


\section*{Differential input resistance}

The input resistance seen by a voltage source applied across the + and - inputs. The default value is 1.3 MOhm.

\section*{Differential input capacitance}

The input capacitance seen by a current source applied across the + and - inputs. The default value is 1.8 pF .

\section*{Fully Differential Op-Amp}

\section*{Common-mode input resistance}

The input resistance seen by a voltage source applied between ground and the + input, or between ground and the - input. The default value is 1 MOhm .

\section*{Common-mode input capacitance}

The input capacitance seen by a current source applied between ground and the + input, or between ground and the - input. The default value is 2.3 pF .

\section*{Output Limits Tab}

\section*{Block Parameters: Fully Differential Op-Amp}

Fully Differential Op-Amp
This block models a fully differential op-amp. The output common-mode voltage is controlled by the common-mode port cm . Internal resistors set the nominal output common-mode voltage to be midway between the values you provide for the positive and negative supply voltages. Consult the block reference documentation for an op-amp model equivalent circuit.

The Initial differential output voltage does not take account of the voltage drop due to the output resistance. The initial condition is not used if you select the Start simulation from steady state option in the Solver Configuration block.

Parameters
\begin{tabular}{|l|l|l|l|}
\hline Gain & Input Impedance & Output Limits & Output Bias \\
& Initial Conditions & \\
\hline Output resistance: & 1 & & Ohm \\
Minimum output voltage low: & -1.4 & & V \\
Maximum output voltage high: & 1.4 & V \\
Differential maximum slew rate: & \(5 \mathrm{e}+3\) & \(\mathrm{~V} / \mathrm{us}\) \\
\hline
\end{tabular}

OK Cancel Help Apply

\section*{Fully Differential Op-Amp}

\section*{Output resistance}

The output resistance of either of the outputs with respect to the common-mode voltage reference. Differential output resistance is therefore twice the value of the output resistance \(R\) _out. The default value is 1 Ohm .

\section*{Minimum output voltage low}

The minimum output voltage for either of the two output pins with respect to ground. The default value is -1.4 V .

\section*{Maximum output voltage low}

The maximum output voltage for either of the two output pins with respect to ground. The default value is 1.4 V .

\section*{Differential maximum slew rate}

The maximum slew rate of the differential output voltage. The default value is \(5000 \mathrm{~V} / \mathrm{\mu s}\).

\title{
Fully Differential Op-Amp
}

\section*{Output Bias Tab}

Block Parameters: Fully Differential Op-Amp
\(x\)
Fully Differential Op-Amp
This block models a fully differential op-amp. The output common-mode voltage is controlled by the common-mode port cm . Internal resistors set the nominal output common-mode voltage to be midway between the values you provide for the positive and negative supply voltages. Consult the block reference documentation for an op-amp model equivalent circuit.

The Initial differential output voltage does not take account of the voltage drop due to the output resistance. The initial condition is not used if you select the Start simulation from steady state option in the Solver Configuration block.

Parameters


Common-mode port input resistance
The input resistance seen by a voltage source applied between ground and the common mode port. The default value is 23 kOhm .

\section*{Negative supply voltage}

The value of the negative supply voltage connected to common-mode bias resistor R3b (see diagram). The default value is -5 V .

\section*{Fully Differential Op-Amp}

\section*{Positive supply voltage}

The value of the positive supply voltage connected to common-mode bias resistor R3a (see diagram). The default value is 5 V .

\section*{Initial Conditions Tab}


\section*{Initial differential output voltage}

The initial differential voltage across the two outputs if the output current is zero. The default value is 0 V .

\section*{Ports \\ The block has the following ports:}
Noninverting input.
Inverting input.
cm
Common-mode port. If you want to leave this pin open-circuit, connect a voltage sensor between the cm port and a reference port.
Vout+
Noninverting output.
Vout-
Inverting output.
See Also Simscape Op-Amp, Band-Limited Op-Amp, Finite-Gain Op-Amp

Purpose
Library
Description
\(\square\) -

Dialog
Box and Parameters

Model fuse that protects against excessive current
Passive Devices
The Fuse block breaks the circuit in which it is connected. It does so when the current through the device exceeds the rated current at which the fuse is designed to blow and continues to exceed it for a specified amount of time.


\section*{Rated current}

The current value at which the fuse blows when exceeded for a specified amount of time. The default value is 1 A .

\section*{Time to fuse}

The time for which the current must exceed the rated current for the fuse to blow. The default value is 0 s .

\section*{Fuse resistance \(R\)}

The fuse resistance. The parameter value must be greater than zero. The default value is \(0.01 \Omega\).

\section*{Open-circuit conductance G}

The open-circuit fuse conductance when the fuse has blown. The parameter value must be greater than zero. The default value is \(1 \mathrm{e}-081 / \Omega\).

Ports
The block has the following ports:

Positive electrical port.

Negative electrical port.
\begin{tabular}{ll} 
Purpose & Simple battery model \\
Library & Sources
\end{tabular}

Description The Generic Battery block represents a simple battery model. If you select Infinite for the Battery charge capacity parameter, the block models the battery as a series resistor and a constant voltage source. If you select Finite for the Battery charge capacity parameter, the block models the battery as a series resistor and a charge-dependent voltage source whose voltage as a function of charge has the following reciprocal relationship:
\[
V=V_{0}\left[1-\left(\frac{\alpha(1-x)}{1-\beta(1-x)}\right)\right]
\]
where:
- \(x\) is the ratio of the ampere-hours left to the number of ampere-hours, \(A H\), for which the battery is rated.
- \(V_{0}\) is the voltage when the battery is fully charged, as defined by the Nominal voltage, V_nominal parameter.
- The block calculates the constants \(\alpha\) and \(\beta\) to satisfy the following battery conditions:
- The battery voltage is zero when the charge is zero, that is, when \(x\) \(=0\).
- The battery voltage is V1 (the Voltage V1 < V_nominal when charge is AH1 parameter value) when the charge is the Charge AH1 when no-load volts are V1 parameter value, that is, when \(x=A H 1 / A H\).

The equation defines a reciprocal relationship between voltage and remaining charge. It is an approximation to what happens in a real battery, but it does replicate the increasing rate of voltage drop at low charge values. It also ensures that the battery voltage becomes zero

\section*{Generic Battery}

\section*{Dialog Box and Parameters}
when the charge level is zero. This simple model has the advantage of requiring very few parameters, and these are parameters that are readily available on most datasheets.


\section*{Nominal voltage, V_nominal}

The voltage at the output port when the battery is fully charged. The default value is 12 V .

\section*{Internal resistance, R1}

Internal connection resistance. The default value is \(2 \Omega\).

\section*{Battery charge capacity}

Select one of the following options for modeling the charge capacity of the battery:
- Infinite - The battery voltage is independent of charge drawn from the battery. This is the default option.
- Finite - The battery voltage decreases as charge decreases.

\section*{Ampere-Hour rating, AH}

The maximum battery charge in ampere-hours. This parameter is only visible when you select Finite for the Battery charge capacity parameter. The default value is \(50 \mathrm{hr*A}\).

\section*{Initial charge}

The battery charge at the start of the simulation. This parameter is only visible when you select Finite for the Battery charge capacity parameter. The default value is \(50 \mathrm{hr*A}\).

Voltage V1 < V_nominal when charge is AH1
The battery output voltage when the charge level is AH1 hr*A. This parameter is only visible when you select Finite for the Battery charge capacity parameter. The default value is 11.5 V.

\section*{Charge AH1 when no-load volts are V1}

The battery charge level in \(\mathrm{hr}^{*}\) A when the no-load output voltage is V1. This parameter is only visible when you select Finite for the Battery charge capacity parameter. The default value is 25 hr *A.

Self-discharge resistance, R2
Select one of the following options for modeling the self-discharge resistance of the battery:
- Omit - Do not include resistance across the battery output terminals in the model.
- Include - Include resistance R2 across the battery output terminals in the model.

R2
The resistance across the battery output terminals that represents battery self-discharge. This parameter is only visible when you

\section*{Generic Battery}
select Include for the Self-discharge resistance, \(\mathbf{R 2}\) parameter. The default value is \(2 \mathrm{e}+03 \Omega\).

\author{
Ports The block has the following ports: \\ \(+\) \\ Positive electrical voltage. \\ Negative electrical voltage. \\ \section*{Examples For an example of how you can create a detailed battery model, see the Simscape Lead-Acid Battery example.}
}

\author{
See Also \\ Simscape DC Voltage Source, Simscape Controlled Voltage Source
}

\section*{Generic Linear Actuator}
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Model generic linear actuator driven from DC voltage source or PWM \\
driver
\end{tabular} \\
Library & Translational Actuators \\
Description & \begin{tabular}{l} 
The Generic Linear Actuator block implements a model of a generic \\
linear actuator designed to be driven from a DC voltage source or a
\end{tabular} \\
PWM driver. Define force-speed characteristics in terms of tabulated \\
values for powering the motor at the rated voltage. This functionality \\
enables you to model a motor without referencing an equivalent circuit.
\end{tabular}

The motor or actuator architecture determines the way in which electrical losses depend on force. For example, a DC motor has losses that are proportional to the square of the current. As force is proportional to current, losses are also proportional to mechanical force. Most motors have an electrical loss term that is proportional to the square of mechanical force. The Generic Linear Actuator block calculates this loss term using the Motor efficiency (percent) and Speed at which efficiency is measured parameters that you provide.

Some motors also have a loss term that is independent of force. An example is a shunt motor where the field winding draws a constant current regardless of load. The Force-independent electrical losses parameter accounts for this effect.
The motor efficiency is the mechanical power divided by the sum of the mechanical power and both electrical loss terms. The block assumes that the speed at which the motor efficiency is defined is in the motoring quadrant and, therefore, positive.

You can operate the block in the reverse direction by changing the sign of the voltage applied. The H-Bridge block, for example, reverses motor direction if the voltage at the REV port is greater than the Reverse threshold voltage parameter. However, if you are using the block in reverse, specify the force-speed data for forward operation:
- Positive forces and positive speeds in the motoring quadrant.

\section*{Generic Linear Actuator}
- Positive force and negative speeds in the generating counterclockwise quadrant.
- Negative force and positive speed in the generating clockwise quadrant.

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Temperature Dependence and Thermal port tabs to the block dialog box.

Use the thermal port to simulate the effects of copper resistance losses that convert electrical power to heat. For more information on using thermal ports and on the Temperature Dependence and Thermal port tab parameters, see "Simulating Thermal Effects in Rotational and Translational Actuators".

\section*{Basic \\ Assumptions and Limitations}

This block has the following limitations:
- The force-speed curve data corresponds only to the rated voltage, so the block produces accurate results only when driven by plus or minus the rated voltage.
- The block requires you to provide force-speed data for the full range over which you use the actuator. To use the actuator in the generating and braking regions, provide additional data outside of the normal motoring region.
- Model behavior is sensitive to force-speed data. For example, no-load speed is correctly defined and finite only when the data crosses the speed axis.
- To drive the block from the H-Bridge block:
- Do not place any other blocks between the H-Bridge and the Generic Linear Actuator blocks.

\section*{Generic Linear Actuator}

\section*{}

In the H-Bridge block dialog box, set the Freewheeling mode to Via one semiconductor switch and one freewheeling diode . Selecting Via two freewheeling diodes does not set the bridge output voltage to zero when the PWM input signal is low.
- In the H-Bridge, Generic Rotary Actuator, and Controlled PWM block dialog boxes, ensure that the Simulation mode is the same for all three blocks.

\section*{Dialog Box and Parameters}

\section*{Electrical Force Tab}


\section*{Speed values}

Specify a vector of speeds, including their units, for your force-speed data. The default value is \(\left[\begin{array}{llllllll}-15 & -10 & -5 & 0 & 5 & 10 & 15\end{array}\right.\) 202530 ] m/s.

\section*{Generic Linear Actuator}

\section*{Force values}

Specify a vector of forces, including their units, for your force-speed data. The default value is [ \(\begin{array}{lllllll}4 & 3.5 & 3 & 2.5 & 2 & 1.5 & 1\end{array}\) \(0.50-0.5 \mathrm{~J}\).

\section*{Rated voltage}

Indicate the voltage for which the device you are modeling is rated. The default value is 12 V .

\section*{Motor efficiency (percent)}

Efficiency that the block uses to calculate force-dependent electrical losses. The default value is 70 .

Speed at which efficiency is measured
Speed that the block uses to calculate force-dependent electrical losses. The default value is \(20 \mathrm{~m} / \mathrm{s}\).

\section*{Force-independent electrical losses}

Fixed electrical loss associated with the actuator when the force is zero. The default value is 2 W .

\section*{Simulation mode}

If you set the Simulation mode parameter to PWM, apply a PWM waveform switching between zero and rated volts to the block electrical terminals. The current drawn from the electrical supply is equal to the amount required to deliver the mechanical power and to compensate for electrical losses. If the applied voltage exceeds the rated voltage, the resultant force scales proportionately. However, applying anything other than the rated voltage can provide unrepresentative results. PWM is the default setting.

If you set the Simulation mode parameter to Averaged, the force generated in response to an applied voltage \(V_{a v}\) is
\[
\frac{V_{a v}}{V_{\text {rated }}} \times F(v)
\]

\section*{Generic Linear Actuator}
where \(F(v)\) is the force value at speed \(v\). The current drawn from the supply is such that the product of the current and \(V_{a v}\) is equal to the average power that is consumed.

\section*{Mechanical Tab}


\section*{Plunger mass}

Mass of the moving part of the motor. The default value is 0.1 kg . The value can be zero.

\section*{Linear damping}

Linear damping. The default value is \(1 \mathrm{e}-05 \mathrm{~N} /(\mathrm{m} / \mathrm{s})\). The value can be zero.

\section*{Initial plunger speed}

Speed of the plunger at the start of the simulation. The default value is \(0 \mathrm{~m} / \mathrm{s}\).

\section*{Generic Linear Actuator}
Ports This block has the following ports:
\(+\)Positive electrical conserving port.Negative electrical conserving port.
CMechanical translational conserving port connected to theactuator case.
RMechanical translational conserving port connected to theplunger.
See Also Generic Rotary Actuator and H-Bridge.

\section*{Generic Rotary Actuator}

\section*{Purpose Model generic rotary actuator driven from DC voltage source or PWM driver \\ Library Rotational Actuators \\ Description \\  \\ The Generic Rotary Actuator block implements a model of a generic rotary actuator designed to be driven from a DC voltage source or PWM driver. You define torque-speed characteristics in terms of tabulated values for powering the motor at the rated voltage. This functionality allows you to model a motor without referencing an equivalent circuit.}

The motor or actuator architecture determines the way in which electrical losses depend on torque. For example, a DC motor has losses that are proportional to the square of the current. As torque is proportional to current, losses are also proportional to mechanical torque. Most motors have an electrical loss term that is proportional to the square of mechanical torque. The Generic Rotary Actuator block calculates this loss term using the Motor efficiency (percent) and Speed at which efficiency is measured parameters that you provide.

Some motors also have a loss term that is independent of torque. An example is a shunt motor where the field winding draws a constant current regardless of load. The Torque-independent electrical losses parameter accounts for this effect.

The motor efficiency is the mechanical power divided by the sum of the mechanical power and both electrical loss terms. The block assumes that the speed at which the motor efficiency is defined is in the motoring quadrant and, therefore, positive.

You can operate the block in the reverse direction by changing the sign of the voltage that you apply. The H-Bridge block, for example, reverses motor direction if the voltage at the REV port is greater than the
Reverse threshold voltage parameter. However, if you are using the block in reverse, specify the torque-speed data for forward operation:
- Positive torques and positive speeds in the motoring quadrant.

\section*{Generic Rotary Actuator}
- Positive torque and negative speeds in the generating counterclockwise quadrant.
- Negative torque and positive speed in the generating clockwise quadrant.

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Temperature Dependence and Thermal port tabs to the block dialog box.

Use the thermal port to simulate the effects of copper resistance losses that convert electrical power to heat. For more information on using thermal ports and on the Temperature Dependence and Thermal port tab parameters, see "Simulating Thermal Effects in Rotational and Translational Actuators".

\section*{Basic \\ Assumptions and Limitations}

This block has the following limitations:
- The torque-speed curve data corresponds only to the rated voltage, so the block produces accurate results only when driven by plus or minus the rated voltage.
- In this block requires, you must provide torque-speed data for the full range over which you use the actuator. To use the actuator in the generating and braking regions, provide additional data outside of the normal motoring region.
- Model behavior is sensitive to torque-speed data. For example, no-load speed is correctly defined and finite only when the data crosses the speed axis.
- To drive the block from the H-Bridge block:
- Do not place any other blocks between the H-Bridge and the Generic Rotary Actuator blocks.

\section*{Generic Rotary Actuator}
- In the H-Bridge block dialog box, set the Freewheeling mode to Via one semiconductor switch and one freewheeling diode . Selecting Via two freewheeling diodes does not set the bridge output voltage to zero when the PWM input signal is low.
- In the H-Bridge, Generic Rotary Actuator, and Controlled PWM block dialog boxes, ensure that the Simulation mode is the same for all three blocks.

\section*{Dialog Box and Parameters}

\section*{Electrical Torque Tab}


\section*{Speed values}

Specify a vector of speeds, including their units, for your torque-speed data. The default value is \([-1.5 e+03-1000-500\) \(050010001.5 \mathrm{e}+032 \mathrm{e}+032.5 \mathrm{e}+033 \mathrm{e}+03 \mathrm{Jrpm}\).

\section*{Generic Rotary Actuator}

\section*{Torque values}

Specify a vector of torques, including their units, for your torque-speed data. The default value is [ 0.040 .0350 .03 \(0.0250 .020 .0150 .010 .0050-0.005\) ] Nm.

\section*{Rated voltage}

Indicate the voltage for which the device you are modeling is rated. The default value is 12 V .

\section*{Motor efficiency (percent)}

The efficiency that the block uses to calculate torque-dependent electrical losses. The default value is 80 .

Speed at which efficiency is measured
The speed that the block uses to calculate torque-dependent electrical losses. The default value is \(2 \mathrm{e}+03 \mathrm{rpm}\).

\section*{Torque-independent electrical losses}

Fixed electrical loss associated with the actuator when the torque is zero. The default value is 0.1 W .

\section*{Simulation mode}

If you set the Simulation mode parameter to PWM, apply a PWM waveform switching between zero and rated volts to the block electrical terminals. The current drawn from the electrical supply is equal to the amount required to deliver the mechanical power and to compensate for electrical losses. If the applied voltage exceeds the rated voltage, the resultant torque scales proportionately. However, applying anything other than the rated voltage can provide unrepresentative results. PWM is the default setting.

If you set the Simulation mode parameter to Averaged, the torque generated in response to an applied voltage \(V_{a v}\) is
\[
\frac{V_{a v}}{V_{\text {rated }}} \times T(\omega)
\]

\section*{Generic Rotary Actuator}
where \(T(\omega)\) is the torque value at speed \(\omega\). The current drawn
from the supply is such that the product of the current and \(V_{a v}\) is equal to the average power that is consumed.

\section*{Mechanical Tab}


\section*{Rotor inertia}

Rotor resistance to change in motor motion. The default value is \(1 \mathrm{e}-04 \mathrm{~kg}^{*} \mathrm{~m}^{2}\). The value can be zero.

\section*{Rotor damping}

Rotor damping. The default value is \(1 \mathrm{e}-08 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\). The value can be zero.

\section*{Initial rotor speed}

Speed of the rotor at the start of the simulation. The default value is 0 rpm .

\section*{Generic Rotary Actuator}
Ports This block has the following ports:
\(+\)Positive electrical conserving port.Negative electrical conserving port.CMechanical rotational conserving port.RMechanical rotational conserving port.
See Also Generic Linear Actuator and H-Bridge.

Purpose Behavioral model of MEMS gyro

Library
Description


Sensors

The Gyro block implements a behavioral model of a MicroElectroMechanical Systems (MEMS) gyro. The gyro provides an output voltage that is proportional to the angular rotation rate presented at the mechanical rotational physical port \(R\). The output voltage is limited according to the values that you provide for maximum and minimum output voltage.

Optionally, you can model sensor dynamics by setting the Dynamics parameter to Model sensor bandwidth. Including dynamics adds a first-order lag between the angular rate presented at port \(R\) and the corresponding voltage applied to the electrical + and - ports.

If running your simulation with a fixed-step solver, or generating code for hardware-in-the-loop testing, MathWorks recommends that you set the Dynamics parameter to No dynamics Suitable for HIL, because this avoids the need for a small simulation time step if the sensor bandwidth is high.

\section*{Dialog}

Box and
Parameters

\section*{Block Parameters: Gyro}

Gyro
This block represents a gyro. The gyro maps the angular rotation rate at mechanical rotational port R to a voltage across the + and - electrical ports.

It is recommended that sensor dynamics be omitted for fixed-step simulation or HIL to avoid the need for a very small time step.

\section*{Parameters}
\begin{tabular}{ll|l|l|}
\hline Sensitivity: & 12.5 & \(\mathrm{~s} * \mathrm{mV} / \mathrm{deg}\) \\
Output voltage for zero rotation: & 2.5 & V \\
\hline Maximum output voltage: & 4 & V \\
\hline Minimum output voltage: & 1 & V \\
Dynamics: & No dynamics - Suitable for HIL & \\
\hline
\end{tabular}
OK Cancel Help Apply

\section*{Sensitivity}

The change in output voltage level per unit change in rotation rate when the output is not being limited. The default value is \(12.5 \mathrm{mV} /(\mathrm{deg} / \mathrm{s})\).

\section*{Output voltage for zero rotation}

The output voltage from the sensor when the rotation rate is zero. The default value is 2.5 V .

\section*{Maximum output voltage}

The maximum output voltage from the sensor, which determines the sensor maximum measured rotational rate. The default value is 4 V .

\section*{Minimum output voltage}

The minimum output voltage from the sensor, which determines the sensor minimum measured rotational rate. The default value is 1 V .

\section*{Dynamics}

Select one of the following options for modeling sensor dynamics:
- No dynamics Suitable for HIL - Do not model sensor dynamics. Use this option when running your simulation fixed step or generating code for hardware-in-the-loop testing, because this avoids the need for a small simulation time step if the sensor bandwidth is high. This is the default option.
- Model sensor bandwidth - Model sensor dynamics with a first-order lag approximation, based on the Bandwidth and the Initial angular rate parameter values.

\section*{Bandwidth}

Specifies the 3dB bandwidth for the measured rotational rate assuming a first-order time constant. This parameter is only visible when you select Model sensor bandwidth for the Dynamics parameter. The default value is 3 kHz .

\section*{Initial angular rate}

Determines the initial condition for the lag by specifying the initial output for the sensor, expressed in units of angular rotation rate. This parameter is only visible when you select Model sensor bandwidth for the Dynamics parameter. The default value is \(0 \mathrm{deg} / \mathrm{s}\).

Ports
The block has the following ports:
R
Mechanical rotational port.
\(+\)
Positive electrical port.

Negative electrical port.

\section*{H-Bridge}
\begin{tabular}{ll} 
Purpose & Model H-bridge motor driver \\
Library & Drivers
\end{tabular}

Description The H-Bridge block represents an H-bridge motor driver. The block has the following two Simulation mode options:
- PWM - The H-Bridge output is a controlled voltage that depends on the input signal at the PWM port. If the input signal has a value greater than the Enable threshold voltage parameter value, the H -Bridge output is on and has a value equal to the value of the Output voltage amplitude parameter. If it has a value less than the Enable threshold voltage parameter value, the block maintains the load circuit using one of the following three Freewheeling mode options:
- Via one semiconductor switch and one freewheeling diode
- Via two freewheeling diodes
- Via two semiconductor switches and one freewheeling diode

The first and third options are sometimes referred to as synchronous operation.
The signal at the REV port determines the polarity of the output. If the value of the signal at the REV port is less than the value of the Reverse threshold voltage parameter, the output has positive polarity; otherwise, it has negative polarity.
- Averaged - This mode has two Load current characteristics options:
- Smoothed
- Unsmoothed or discontinuous

The Smoothed option assumes that the current is practically continuous due to load inductance. In this case, the H-Bridge output is:
\[
\frac{V_{O} V_{P W M}}{A_{P W M}}-I_{O U T} R_{O N}
\]
where:
- \(V_{O}\) is the value of the Output voltage amplitude parameter.
- \(V_{P W M}\) is the value of the voltage at the PWM port.
- \(A_{P W M}\) is the value of the PWM signal amplitude parameter.
- \(I_{\text {OUT }}\) is the value of the output current.
- \(R_{O N}\) is the Bridge on resistance parameter.

The current will be smooth if the PWM frequency is large enough. Synchronous operation where freewheeling is via a bridge arm back to the supply also helps smooth the current. For cases where the current is not smooth, or possibly discontinuous (that is, it goes to zero between PWM cycles), use the Unsmoothed or discontinuous option. For this option, you must also provide values for the Total load series resistance, Total load series inductance and PWM frequency. During simulation, the block uses these values to calculate a more accurate value for H -bridge output voltage that achieves the same average current as would be present if simulating in PWM mode.

Set the Simulation mode parameter to Averaged to speed up simulations when driving the H -Bridge block with a Controlled PWM Voltage block. You must also set the Simulation mode parameter of the Controlled PWM Voltage block to Averaged mode. This applies the average of the demanded PWM voltage to the motor. The accuracy of the Averaged mode simulation results relies on the validity of your assumption about the load current. If you specify that the current is Unsmoothed or discontinuous, then the accuracy also depends on the values you provide for load resistance and inductance being representative. This mode also makes some simplifying assumptions about the underlying equations for the case when current is discontinuous. For typical motor and bridge parameters, accuracy should be within a few percent. To verify Averaged mode accuracy, run

\section*{H-Bridge}
the simulation using the PWM mode and compare the results to those obtained from using the Averaged mode.
Braking mode is invoked when the voltage presented at the BRK port is larger than the Braking threshold voltage. Regardless of whether in PWM or Averaged mode, when in braking mode the H -bridge is modeled by a series combination of two resistances \(R 1\) and \(R 2\) where:
- \(R 1\) is the resistance of a single bridge arm, that is, half the value of the Total bridge on resistance parameter.
- \(R 2\) is the resistance of a single bridge arm in parallel with a diode resistance, that is, \(R 1 \cdot R d /(R 1+R d)\), where \(R d\) is the diode resistance.

\section*{Basic Assumptions and Limitations}

The model has the following limitations:
- If you are linearizing your model, set the Simulation mode parameter to Averaged and ensure that you have specified the operating point correctly. You can only linearize the H-Bridge block for inputs that are greater than zero and less than the PWM signal amplitude.
- No forward voltage is modeled for the freewheeling diodes. They are approximated as ideal resistances when forward biased, with resistance equal to the Freewheeling diode on resistance parameter value.
- In Averaged mode, and with the Unsmoothed or discontinuous choice for Load current characteristics, you must provide representative values for load inductance and resistance. If driving a DC Motor, then the resistance is the armature resistance, and the inductance is the sum of the armature inductance plus series smoothing inductor (if present). For a Universal motor, total resistance is the sum of the armature and field windings, and total inductance is the sum of armature and field inductances plus any series smoothing inductance. For a Shunt Motor, MathWorks recommends that you draw a Thévenin equivalent circuit to determine appropriate values.

\section*{Dialog Simulation Mode \& Load Assumptions Tab Box and Parameters}


\section*{Simulation mode}

Select one of the following options for the type of output voltage:

\section*{H-Bridge}
- PWM - The output voltage is a pulse-width modulated signal. This is the default option.
- Averaged - The output voltage is a constant whose value is equal to the average value of the PWM signal.

\section*{Freewheeling mode}

Select one of the following options for the type of H -Bridge dissipation circuit:
- Via one semiconductor switch and one freewheeling diode - In this mode, the block controls the load by maintaining one high-side bridge arm permanently on and using the PWM signal to modulate the corresponding low-side bridge arm. This means that the block uses only one of the freewheeling diodes in completing the dissipation circuit when the bridge turns off. This option is the default.
- Via two freewheeling diodes - In this mode, all bridge arms are off during the bridge off-state. This means that the block dissipates the load current across the power supply by two freewheeling diodes.
- Via two semiconductor switches and one freewheeling diode - In this mode, the block controls the load by maintaining one high-side bridge arm permanently on and using the PWM signal to toggle between enabling the corresponding low-side bridge arm and the opposite high-side bridge arm. This means that the block uses a freewheeling diode in parallel with a bridge arm, plus another series bridge arm, to complete the dissipation circuit when the bridge turns off.
This parameter is only visible when you select PWM for the Simulation mode parameter, or when you select Averaged for the Simulation mode parameter and Unsmoothed or discontinuous for the Load current characteristics parameter.

\section*{Load current characteristics}

Select one of the following options for the type of load current:
- Smoothed - Assumes that the current is practically continuous due to load inductance. This option is the default.
- Unsmoothed or discontinuous - Use this option for cases where the current is not smooth, or possibly discontinuous (that is, it goes to zero between PWM cycles). For this option, you must also provide values for the Total load series resistance, Total load series inductance, and PWM frequency parameters. During simulation, the block uses these values to calculate a more accurate value for H -bridge output voltage that achieves the same average current as would be present if simulating in PWM mode.
This parameter is only visible when you select Averaged for the Simulation mode parameter.

\section*{Load total series resistance}

The total load series resistance seen by the H-bridge. The default value is \(10 \Omega\).

This parameter is only visible when you select Averaged for the Simulation mode parameter and Unsmoothed or discontinuous for the Load current characteristics parameter.

\section*{Load total series inductance}

The total load series inductance seen by the H-bridge. As well as motor inductance, you should include any series inductance added external to the motor to smooth current. The default value is \(1 \mathrm{e}-5 \mathrm{H}\).

This parameter is only visible when you select Averaged for the Simulation mode parameter and Unsmoothed or discontinuous for the Load current characteristics parameter.

\section*{PWM frequency}

The PWM frequency at which the H -bridge is driven. For consistency, this should be the same value as the PWM frequency

\section*{H-Bridge}
specified by the Controlled PWM Voltage block driving the H -Bridge. The default value is 10 kHz .

This parameter is only visible when you select Averaged for the Simulation mode parameter and Unsmoothed or discontinuous for the Load current characteristics parameter.

\section*{Input Thresholds Tab}


\section*{Enable threshold voltage}

Threshold above which the voltage at the PWM port must rise to enable the H-Bridge output. This parameter is used only when the Simulation mode parameter on the Simulation Mode \& Load Assumptions tab is set to PWM. The default value is 2.5 V .

\section*{H-Bridge}

\section*{PWM signal amplitude}

The amplitude of the signal at the PWM input. The H-Bridge block uses this parameter only when the Simulation mode parameter on the Simulation Mode \& Load Assumptions tab is set to Averaged. The default value is 5 V .

\section*{Reverse threshold voltage}

When the voltage at the REV port is greater than this threshold, the output polarity becomes negative. The default value is 2.5 V .

\section*{Braking threshold voltage}

When the voltage at the BRK port is greater than this threshold, the H -Bridge output terminals are short-circuited via the following series of devices:
- One bridge arm
- One bridge arm in parallel with a conducting freewheeling diode
The default value is 2.5 V .

\section*{Bridge Parameters Tab}

Block Parameters: H-Bridge
H-Bridge
This block represents an H -bridge motor driver.
The block can be driven by the Controlled PWM Voltage block in PWM or Averaged mode. In PWM mode, the motor is powered if the PWM port voltage V is above the Enable threshold voltage. In Averaged mode, the PWM port voltage divided by the PWM signal amplitude parameter defines the ratio of the on-time to the PWM period. Using this ratio and assumptions about the load, the block applies an average voltage to the load that achieves the correct average load current. The Simulation mode parameter value must be the same for the Controlled PWM Voltage and H-Bridge blocks.

If the REV port voltage is greater than the Reverse threshold voltage, then the output voltage polarity is reversed. If the BRK port voltage is greater than the Braking threshold voltage, then the output terminals are short circuited via one bridge arm in series with the parallel combination of a second bridge arm and a freewheeling diode.

Voltages at ports PWM, REV and BRK are defined relative to the REF port.
Parameters


OK


Help Apply

\section*{Output voltage amplitude}

The amplitude of the voltage across the H-Bridge output ports when the output is on. The default value is 12 V .

\section*{H-Bridge}

\section*{Total bridge on resistance}

The total effective resistance of the two semiconductor switches that connect the load to the two power rails when the voltage at the PWM port is greater than the value of the Enable threshold voltage parameter on the Input Thresholds tab. The default value is \(0.1 \Omega\).

\section*{Freewheeling diode on resistance}

The total resistance in the freewheeling diodes that dissipate the current that flows through the motor when the voltage at the PWM port is less than the value of the Enable threshold voltage parameter on the Input Thresholds tab. This parameter is only visible when you select PWM for the Simulation mode parameter on the Simulation Mode \& Load Assumptions tab. The default value is \(0.1 \Omega\).

Ports The block has the following ports:
+ref
Positive electrical output voltage.
-ref
Negative electrical output voltage.
PWM
Pulse-width modulated signal. The voltage is defined relative to the REF port.

REF
Floating zero volt reference.
REV
Voltage that controls when to reverse the polarity of the H-Bridge output. The voltage is defined relative to the REF port.

BRK
Voltage that controls when to short circuit the H-Bridge output. The voltage is defined relative to the REF port.

Examples \(\begin{aligned} & \text { See the Controlled DC Motor, Linear Electrical Actuator (System-Level } \\ & \text { Model) and Linear Electrical Actuator (Implementation Model) } \\ & \text { examples. }\end{aligned}\)

\section*{Incandescent Lamp}

Purpose
Library
Description

Model incandescent lamp, with resistance depending on temperature

\section*{Passive Devices}

The Incandescent Lamp block models an incandescent lamp, the key characteristic of which is that the resistance increases as the filament warms up.
Under the simplifying assumption that the rate of heat loss from the filament is proportional to temperature difference to ambient, the temperature of the filament is governed by
\[
k t_{c} \frac{d T}{d t}=i^{2} R-k T
\]
and the filament resistance is governed by the following equation
\[
R=R_{0}(1+\alpha T)
\]
where:
- \(R_{0}\) is the initial resistance at turn-on (when filament is at ambient temperature).
- \(T\) is the filament temperature relative to ambient temperature.
- \(\alpha\) is the resistance temperature coefficient.
- \(t_{\mathrm{c}}\) is the thermal time constant.
- \(k\) is the heat transfer coefficient.
- \(R\) is the filament resistance.
- \(i\) is the filament current.

There are two parameterization options:
- If you select Specify resistance values directly, the block uses values that you provide for filament resistance when on and at turn-on to determine the value for the heat transfer coefficient.
- If you select Specify currents, the block uses values that you provide for filament current when on and at turn-on to determine the value for the heat transfer coefficient.

Optionally you can specify a simulation time at which the lamp fails by providing a finite value for the Time at which lamp goes open circuit parameter on the Faults tab. When in the open-circuit state, the lamp resistance is set to be the value of the Open-circuit resistance parameter.

\section*{Dialog Box and Parameters}
- "Resistance Tab" on page 1-222
- "Dynamics Tab" on page 1-224
- "Faults Tab" on page 1-225

\section*{Incandescent Lamp}

\section*{Resistance Tab}

\section*{Block Parameters: Incandescent Lamp}

\section*{Incandescent Lamp}

This block models an incandescent lamp. The resistance is given by \(R=R 0 *\) ( \(1+a l p h a *\) deltaT) where R 0 is the initial resistance at turn-on, alpha is the resistance temperature coefficient and deltaT is the change in temperature.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Resistance & Dynamics & Faults & \\
\hline Parameterization: & Specify resistance values directly & \\
\begin{tabular}{lll} 
Initial resistance at turn-on: & 0.15 & Ohm \\
Steady-state resistance when on: & 1 & Ohm \\
\begin{tabular}{lll} 
Rated voltage: & 12 & V \\
\begin{tabular}{l} 
Resistance temperature \\
coefficient:
\end{tabular} & 0.004 & \(1 / \mathrm{K}\) \\
\hline
\end{tabular} & &
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameterization}

Select one of the following methods for block parameterization:
- Specify resistance values directly - Provide the values for filament resistance at turn-on and when on in steady state. The block determines the value for the heat transfer coefficient based on these values. This is the default option.
- Specify currents - Provide the values for filament current at turn-on and when on in steady state. The block determines the value for the heat transfer coefficient based on these values.

\section*{Initial resistance at turn-on}

The resistance seen by the external circuit when the lamp is initially turned on. This parameter is only visible when you select Specify resistance values directly for the Parameterization parameter. The default value is \(0.15 \Omega\).

\section*{Steady-state resistance when on}

The resistance seen by the external circuit when the lamp is on and in steady state. This parameter is only visible when you select Specify resistance values directly for the Parameterization parameter. This resistance should be greater than the Initial resistance at turn-on. The default value is \(1 \Omega\).

\section*{Inrush current at turn-on}

The current through the lamp when it is initially turned on. This parameter is only visible when you select Specify currents for the Parameterization parameter. The default value is 70 A .

\section*{Steady-state current when on}

The current through the lamp when it is on and in steady state. This parameter is only visible when you select Specify currents for the Parameterization parameter. This current should be less than the Inrush current at turn-on. The default value is 10 A .

\section*{Rated voltage}

The rated voltage for the lamp, and the voltage value for which the resistance or current values are provided in the on and turn-on states. The default value is 12 V .

\section*{Resistance temperature coefficient}

The fractional increase in resistance per unit increase in temperature. The default value is \(0.0041 / \mathrm{K}\).

\section*{Incandescent Lamp}

\section*{Dynamics Tab}

\section*{Block Parameters: Incandescent Lamp}

\section*{Incandescent Lamp}

This block models an incandescent lamp. The resistance is given by \(\mathrm{R}=\mathrm{R} 0^{*}\) ( \(1+\) alpha*deltaT) where R 0 is the initial resistance at turn-on, alpha is the resistance temperature coefficient and deltaT is the change in temperature.

\section*{Parameters}

\section*{Resistance Dynamics Faults}

Thermal time constant:
25
Initial lamp state:
Off

\section*{Thermal time constant}

The first-order thermal time constant for filament temperature when the lamp is turned on or off. The default value is 25 ms .

\section*{Initial lamp state}

Select between On and Off. The default is Off.

\section*{Incandescent Lamp}

\section*{Faults Tab}

\section*{Block Parameters: Incandescent Lamp}

\section*{Incandescent Lamp}

This block models an incandescent lamp. The resistance is given by \(R=R 0^{*}\) ( \(1+\) alpha*deltaT) where \(R 0\) is \(t\) initial resistance at turn-on, alpha is the resistance temperature coefficient and deltaT is the change in temperature.

\section*{Parameters}
Resistance \(\quad\) Dynamics Faults

Time at which lamp goes open circuit:

Inf
s

Open-circuit resistance:
\(1 \mathrm{e}+6\)
Ohm

Time at which lamp goes open circuit
For simulation times greater than this parameter value the filament resistance becomes equal to the Open-circuit resistance. The default value is inf seconds. Specifying a finite value for this parameter lets you simulate the fault dynamics when the bulb burns out.

\section*{Incandescent Lamp}

\section*{Open-circuit resistance}

The value of the filament resistance used when the lamp goes open-circuit. The default value is \(1 \mathrm{e} 6 \Omega\).

\section*{Ports The block has the following ports:}

Positive electrical port.

Negative electrical port.

\section*{Incremental Shaft Encoder}

\section*{Purpose}

\section*{Library}

Description


Model device that converts information about angular shaft position into electrical pulses

\section*{Sensors}

The Incremental Shaft Encoder block represents a device that converts information about the angular position of a shaft into electrical pulses. The block produces \(N\) pulses on ports A and B per shaft revolution, where \(N\) is the value you specify for the Pulses per revolution parameter. Pulses A and B are 90 degrees out of phase. If the shaft rotates in a positive direction, then A leads B. The block produces a single index pulse on port Z once per revolution. The Z pulse positive transition always coincides with an A pulse positive transition. The voltages at output ports \(\mathrm{A}, \mathrm{B}\), and Z are defined relative to the REF reference port voltage.

Use this block if you need to model the shaft encoder signals, either to support development of a decoding algorithm, or to include the quantization effects. Otherwise, use the Simscape Ideal Rotational Motion Sensor block.

\section*{Basic \\ Assumptions and Limitations}

The Incremental Shaft Encoder block has the following limitations:
- The Incremental Shaft Encoder block is not linearizable. Use the Simscape Ideal Rotational Motion Sensor block for control design studies where you need to linearize your model.

\section*{Incremental Shaft Encoder}

\section*{Dialog Box and Parameters}


\section*{Pulses per revolution}

The number of pulses produced on each of the A and B phases per revolution of the shaft. The default value is 2 .

\section*{Output voltage amplitude}

The amplitude of the shaft encoder output voltage when the output is high. The default value is 5 V .

\section*{Index pulse offset relative to shaft initial angle}

The offset of the index pulse Z relative to the angle of the shaft at the start of the simulation. This parameter lets you set the initial location of the index pulse. The default value is \(0^{\circ}\).

Ports The block has the following ports:
R
Mechanical rotational conserving port associated with the sensor positive probe.

\section*{Incremental Shaft Encoder}Mechanical rotational conserving port associated with the sensornegative (reference) probe.
AEncoded electrical output.BEncoded electrical output.ZIndex, or synchronization, electrical output.
REF
Floating zero volt reference.
See Also Simscape Ideal Rotational Motion Sensor

\section*{Induction Motor}

Purpose
Model induction motor powered by ideal AC supply
Library
Rotational Actuators
Description The Induction Motor block represents the electrical and torque characteristics of an induction motor powered by an ideal AC supply.
 The following figure shows the equivalent circuit model of the Induction Motor block.


In the figure:
- \(\mathrm{R}_{1}\) is the stator resistance.
- \(\mathrm{R}_{2}\) is the rotor resistance with respect to the stator.
- \(\mathrm{L}_{1}\) is the stator inductance.
- \(\mathrm{L}_{2}\) is the rotor inductance with respect to the stator.
- \(\mathrm{L}_{\mathrm{m}}\) is magnetizing inductance.
- \(s\) is the rotor slip.
- \(\bar{V}\) and \(\bar{I}\) are the sinusoidal supply voltage and current phasors.

Rotor slip s is defined in terms of the mechanical rotational speed \(\omega_{m}\), the number of pole pairs p , and the electrical supply frequency \(\omega\) by
\[
s=1-\frac{p \omega_{m}}{\omega}
\]

This means that the slip is one when starting, and zero when running synchronously with the supply frequency.

For an \(n\)-phase induction motor the torque-speed relationship is given by:
\[
T=\frac{n p R_{2}}{s \omega} \frac{V_{r m s}{ }^{2}}{\left(R_{1}+R_{2}+\frac{1-s}{s} R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}}
\]
where:
- \(V_{r m s}\) is the line-neutral supply voltage for a star-configuration induction motor, and the line-to-line voltage for a delta-configuration induction motor.
- \(n\) is the number of phases.

You can parameterize this block in terms of the preceding equivalent circuit model parameters or in terms of the motor ratings the block uses to derive these parameters.

This block produces a positive torque acting from the mechanical C to R ports.

\section*{Thermal Ports}

The block has two optional thermal ports, one per winding, hidden by default. To expose the thermal ports, right-click the block in your model, and then from the context menu select Simscape block choices \(>\)

\section*{Induction Motor}

Show thermal port. This action displays the thermal ports on the block icon, and adds the Temperature Dependence and Thermal port tabs to the block dialog box. These tabs are described further on this reference page.

Use the thermal ports to simulate the effects of copper resistance losses that convert electrical power to heat. For more information on using thermal ports in actuator blocks, see "Simulating Thermal Effects in Rotational and Translational Actuators".

\section*{Basic Assumptions and Limitations}

The model is based on the following assumptions:
- The block does not model the starting mechanism for a single-phase induction motor.
- When you parameterize the block by motor ratings, the block derives the equivalent circuit model parameters by assuming that the effect of the magnetizing inductance \(L_{m}\) is negligible, and the magnetizing inductance is not included in the simulated component.
- "Electrical Torque Tab" on page 1-233
- "Power Supply Tab" on page 1-238
- "Mechanical Tab" on page 1-240
- "Temperature Dependence Tab" on page 1-241
- "Thermal Port Tab" on page 1-243

\section*{Induction Motor}

\section*{Electrical Torque Tab}

Block Parameters: Induction Motor
Induction Motor
This block represents the electrical and torque characteristics of an induction motor powered by an ideal AC supply. The block may be parameterized via motor ratings or equivalent circuit parameters expressed with respect to the stator. Physical signal outputs are provided for slip (s), real power (W), imaginary power (VAR) and mechanical speed (wm). If used to model a single-phase induction motor, then the effect of the starting mechanism (e.g. shaded-pole) is not modeled.

The block produces a positive torque acting from the mechanical C to R ports.
Parameters
\begin{tabular}{|c|c|c|c|c|}
\hline Electrical Torque & Power Supply & Mechanical & & \\
\hline \multicolumn{2}{|l|}{Model parameterization:} & By motor ratings & & \(\bullet\) \\
\hline \multicolumn{2}{|l|}{Rated mechanical power:} & 825 & W & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Rated speed:} & \(3.5 \mathrm{e}+3\) & rpm & - \\
\hline \multicolumn{2}{|l|}{Rated RMS line-to-line voltage:} & 200 & V & - \\
\hline \multicolumn{2}{|l|}{Rated supply frequency:} & 60 & Hz & - \\
\hline \multicolumn{2}{|l|}{Rated RMS line current:} & 2.7 & A & - \\
\hline \multicolumn{2}{|l|}{R1 parameterization:} & From motor efficiency & & \(\bullet\) \\
\hline \multicolumn{2}{|l|}{Motor efficiency (percent):} & 95 & & \\
\hline \multicolumn{2}{|l|}{Number of pole pairs:} & 1 & & \\
\hline \multicolumn{2}{|l|}{Number of phases:} & 3 & & \\
\hline \multicolumn{2}{|l|}{Stator connections:} & Star configuration & & \(\bullet\) \\
\hline
\end{tabular}

\section*{Induction Motor}

\section*{Model parameterization}

Select one of the following methods for block parameterization:
- By motor ratings - Provide electrical torque parameters that the block converts to an equivalent circuit model of the motor assuming that the effect of the magnetizing inductance \(\mathrm{L}_{\mathrm{m}}\) is negligible. This is the default method.
- By equivalent circuit parameters - Provide electrical parameters for an equivalent circuit model of the motor.

\section*{Stator resistance R1}

Resistance of the stator winding. The default value is \(1 \Omega\). This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter.

\section*{Rotor resistance R2}

Resistance of the rotor, specified with respect to the stator. The default value is \(1 \Omega\). This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter.

\section*{Stator inductance L1}

Inductance of the stator winding. The default value is 0.02 H . This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter.

\section*{Rotor inductance L2}

Inductance of the rotor, specified with respect to the stator. The default value is 0.02 H . This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter.
Magnetizing inductance Lm
Magnetizing inductance of the stator. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter. Its value is hard to estimate from motor parameters, but the effect is usually small.

If you do not know its value, use a typical value of 25 times the Stator inductance L1 value. The default value is 0.5 H .

\section*{Rated mechanical power}

Mechanical power the motor delivers when running at the rated speed. The default value is 825 W . This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

\section*{Rated speed}

Speed at which the motor delivers the specified Rated mechanical power value. The default value is \(3.5 \mathrm{e}+03 \mathrm{rpm}\). This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

\section*{Rated RMS line-to-line voltage}

Line-to-line voltage at which the motor ratings are specified. The default value is 200 V . This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

\section*{Rated supply frequency}

Frequency of the AC supply voltage at which the motor ratings are specified. The default value is 60 hertz. This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

\section*{Rated RMS line current}

Line current at which the motor delivers the specified Rated mechanical power value. The default value is 2.7 A . This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

\section*{R1 parameterization}

Select one of the following parameterizations for the equivalent circuit resistance, \(\mathrm{R}_{1}\), of the motor:
- From motor efficiency - Calculate \(\mathrm{R}_{1}\) from the motor efficiency. This is the default method.

\section*{Induction Motor}
- From power factor - Calculate \(\mathrm{R}_{1}\) from the motor power factor.
- Use measured stator resistance R 1 - Measure \(\mathrm{R}_{1}\) directly. This parameter is only visible when you select By motor ratings for the Model parameterization parameter.

\section*{Motor efficiency (percent)}
the percentage of input power to the motor that gets delivered to the mechanical load when running at the Rated speed value. The default value is 95 . This parameter is only visible when you select By motor ratings for the Model parameterization parameter and From motor efficiency for the R1 parameterization parameter.

\section*{Motor power factor}

The cosine of the angle by which the supply current lags the supply voltage when running at the Rated mechanical power value. The default value is 0.93 . This parameter is only visible when you select By motor ratings for the Model parameterization parameter and From power factor for the R1 parameterization parameter.

\section*{Measured stator resistance R1}
the measured stator resistance. The default value is \(1 \Omega\). This parameter is only visible when you select By motor ratings for the Model parameterization parameter and Use measured stator resistance R1 for the R1 parameterization parameter.

\section*{Number of pole pairs}

Total number of pole pairs for the motor. The default value is 1.

\section*{Number of phases}

Number of supply phases. The default value is 3 .

\section*{Stator connections}

Select one of the following motor configurations:
- Delta configuration - Connect the motor stator windings in delta configuration. This is the default method.
- Star configuration - Connect the motor stator windings in star configuration.

\section*{Induction Motor}

\section*{Power Supply Tab}

\section*{Block Parameters: Induction Motor}

\section*{Induction Motor}

This block represents the electrical and torque characteristics of an induction motor powered by an ideal AC supply. The block may be parameterized via motor ratings or equivalent circuit parameters expressed with respect to the stator. Physical signal outputs are provided for slip (s), real power (W), imaginary power (VAR) and mechanical speed (wm). If used to model a single-phase induction motor, then the effect of the starting mechanism (e.g. shaded-pole) is not modeled.

The block produces a positive torque acting from the mechanical C to R ports.
Parameters
\begin{tabular}{|l|l|l|l|}
\hline Electrical Torque & Power Supply & Mechanical & \\
\hline Supply RMS line-to-line voltage: & 200 & V & \\
\hline Supply frequency: & 60 & Hz \\
\hline
\end{tabular}

\section*{Supply RMS line-to-line voltage}

The line-to-line voltage that supplies the motor. The default value is 200 V .

\section*{Supply frequency}

Frequency of the AC supply voltage. The default value is 60 hertz.

\section*{Induction Motor}

\section*{Mechanical Tab}

\section*{Block Parameters: Induction Motor}

\section*{\(x\)}

\section*{Induction Motor}

This block represents the electrical and torque characteristics of an induction motor powered by an ideal AC supply. The block may be parameterized via motor ratings or equivalent circuit parameters expressed with respect to the stator. Physical signal outputs are provided for slip (s), real power (W), imaginary power (VAR) and mechanical speed (wm). If used to model a single-phase induction motor, then the effect of the starting mechanism (e.g. shaded-pole) is not modeled.

The block produces a positive torque acting from the mechanical C to R ports.

\section*{Parameters}
Electrical Torque \(\quad\) Power Supply Mechanical
\begin{tabular}{lllll|} 
Rotor inertia: & 0.001 & \(\mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2\) & - \\
Rotor damping: & \(1 \mathrm{e}-4\) & \(\mathrm{~N}^{*} \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\) & - \\
\hline Initial rotor speed: & 0 & rpm & - & \\
\hline
\end{tabular}

\section*{Rotor inertia}

Rotor inertia. The default value is \(0.1 \mathrm{~kg}^{*} \mathrm{~m}^{2}\). The value can be zero.

\section*{Rotor damping}

Rotor damping. The default value is \(2 \mathrm{e}-06 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})\). The value can be zero.

Initial rotor speed
Speed of the rotor at the start of the simulation. The default value is 0 rpm .

\section*{Temperature Dependence Tab}

This tab appears only for blocks with exposed thermal ports. For more information, see "Thermal Ports" on page 1-897.

\section*{Induction Motor}


\section*{Resistance temperature coefficients, [alpha_1 alpha_2]}

A 1 by 2 row vector defining the coefficient \(\alpha\) in the equation relating resistance to temperature, as described in "Thermal Model for Actuator Blocks". The first element corresponds to the stator, and the second to rotor. The default value is for copper, and is [ 0.003930 .00393 ] \(1 / \mathrm{K}\).

\section*{Measurement temperature}

The temperature for which motor parameters are defined. The default value is 25 C .

\section*{Thermal Port Tab}

This tab appears only for blocks with exposed thermal ports. For more information, see "Thermal Ports" on page 1-897.


\section*{Induction Motor}

\section*{Thermal masses, [M_1 M_2]}

A 1 by 2 row vector defining the thermal mass for the stator and rotor windings. The thermal mass is the energy required to raise the temperature by one degree. The default value is [ 100100 ] J/K.

\section*{Initial temperatures, [T_A T_B]}

A 1 by 2 row vector defining the temperature of the stator and rotor thermal ports at the start of simulation. The default value is [ 2525 ] C.

\section*{Ports \\ The block has the following ports:}

W
Real power.
wm
Mechanical speed.
VAR
Imaginary power.
s
Motor slip.
C
Mechanical rotational conserving port.
R
Mechanical rotational conserving port.
H1
Stator thermal port. For more information, see "Thermal Ports" on page 1-897.

H2
Rotor thermal port. For more information, see "Thermal Ports" on page 1-897.

\section*{References}
[1] S.E. Lyshevski. Electromechanical Systems, Electric Machines, and Applied Mechatronics, CRC, 1999.

See Also DC Motor, Servomotor, Shunt Motor, and Universal Motor.

\section*{Light-Emitting Diode}

\section*{Purpose}

\section*{Library}

Description
and

Model light-emitting diode as exponential diode and current sensor in series

\section*{Sensors}

The Light-Emitting Diode block represents a light-emitting diode as an exponential diode in series with a current sensor. The optical power presented at the signal port W is equal to the product of the current flowing through the diode and the Optical power per unit current parameter value.

The exponential diode model provides the following relationship between the diode current \(I\) and the diode voltage \(V\) :
\[
I=I S \cdot\left(e^{\frac{q V}{N k T_{m 1}}}-1\right)
\]
where:
- \(q\) is the elementary charge on an electron (1.602176e-19 Coulombs).
- \(k\) is the Boltzmann constant (1.3806503e-23 J/K).
- \(N\) is the emission coefficient.
- IS is the saturation current.
- \(T_{\mathrm{m} 1}\) is the temperature at which the diode parameters are specified, as defined by the Measurement temperature parameter value.

When \(\left(q V / N k T_{\mathrm{m} 1}\right)>80\), the block replaces \(e^{\frac{q V}{N k T_{m 1}}}\) with \(\left(q V / N k T_{\mathrm{m} 1}-\right.\) 79) \(\mathrm{e}^{80}\), which matches the gradient of the diode current at ( \(q V / N k T_{\mathrm{m} 1}\) ) \(=80\) and extrapolates linearly. When \(\left(q V / N k T_{\mathrm{m} 1}\right)<-79\), the block replaces \(e^{\frac{q V}{N k T_{m 1}}}\) with \(\left(q V / N k T_{\mathrm{m} 1}+80\right) \mathrm{e}^{-79}\), which also matches the gradient and extrapolates linearly. Typical electrical circuits do not

\section*{Light-Emitting Diode}
reach these extreme values. The block provides this linear extrapolation to help convergence when solving for the constraints during simulation.

When you select Use parameters IS and \(N\) for the Parameterization parameter, you specify the diode in terms of the Saturation current IS and Emission coefficient \(\mathbf{N}\) parameters. When you select Use I-V curve data points for the Parameterization parameter, you specify two voltage and current measurement points on the diode I-V curve and the block derives the \(I S\) and \(N\) values. When you specify current and voltage measurements, the block calculates \(I S\) and \(N\) as follows:
- \(\mathrm{N}=\left(\left(V_{1}-V_{2}\right) / V_{t}\right) /\left(\log \left(I_{1}\right)-\log \left(I_{2}\right)\right)\)
- \(\mathrm{IS}=\left(I_{1} /\left(\exp \left(V_{1} /\left(\mathrm{N} V_{t}\right)\right)-1\right)+I_{2} /\left(\exp \left(V_{2} /\left(\mathrm{N} V_{t}\right)\right)-1\right)\right) / 2\)
where:
- \(V_{\mathrm{t}}=k T_{\mathrm{m} 1} / q\).
- \(V_{1}\) and \(V_{2}\) are the values in the Voltages [V1 V2] vector.
- \(I_{1}\) and \(I_{2}\) are the values in the Currents [I1 I2] vector.

The exponential diode model provides the option to include a junction capacitance:
- When you select Fixed or zero junction capacitance for the Junction capacitance parameter, the capacitance is fixed.
- When you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter, the block uses the coefficients \(C J O, V J, M\), and \(F C\) to calculate a junction capacitance that depends on the junction voltage.
- When you select Use C-V curve data points for the Junction capacitance parameter, the block uses three capacitance values on the C-V capacitance curve to estimate \(C J O, V J\), and \(M\) and uses these values with the specified value of \(F C\) to calculate a

\section*{Light-Emitting Diode}
junction capacitance that depends on the junction voltage. The block calculates CJO, VJ, and \(M\) as follows:
- CJ0 \(=C_{1}\left(\left(V_{R 2}-V_{R 1}\right) /\left(V_{R 2}-V_{R 1}\left(C_{2} / C_{1}\right)^{-1 / M}\right)\right)^{M}\)
- \(V J=-\left(-V_{R 2}\left(C_{1} / C_{2}\right)^{-1 / M}+V_{R 1}\right) /\left(1-\left(C_{1} / C_{2}\right)^{-1 / M}\right)\)
- \(M=\log \left(C_{3} / C_{2}\right) / \log \left(V_{R 2} / V_{R 3}\right)\)
where:
- \(V_{R 1}, V_{R 2}\), and \(V_{R 3}\) are the values in the Reverse bias voltages [VR1 VR2 VR3] vector.
- \(C_{1}, C_{2}\), and \(C_{3}\) are the values in the Corresponding capacitances [C1 C2 C3] vector.
It is not possible to estimate \(F C\) reliably from tabulated data, so you must specify its value using the Capacitance coefficient FC parameter. In the absence of suitable data for this parameter, use a typical value of 0.5.

The reverse bias voltages (defined as positive values) should satisfy \(V_{R 3}>V_{R 2}>V_{R 1}\). This means that the capacitances should satisfy \(C_{1}>C_{2}>C_{3}\) as reverse bias widens the depletion region and hence reduces capacitance. Violating these inequalities results in an error. Voltages \(V_{R 2}\) and \(V_{R 3}\) should be well away from the Junction potential \(V J\). Voltage \(V_{R 1}\) should be less than the Junction potential \(V J\), with a typical value for \(V_{R 1}\) being 0.1 V .

The voltage-dependent junction is defined in terms of the capacitor charge storage \(Q_{j}\) as:
- For \(V<F C \cdot V J\) :
\[
Q_{j}=C J 0 \cdot(V J /(M-1)) \cdot\left((1-V / V J)^{1-M}-1\right)
\]
- For \(V \geq F C \cdot V J\) :

\section*{Light-Emitting Diode}
\[
Q_{j}=C J 0 \cdot F_{1}+\left(C J 0 / F_{2}\right) \cdot\left(F_{3} \cdot(V-F C \cdot V J)+0.5(M / V J) \cdot\left(V^{2}-(F C \cdot V J)^{2}\right.\right.
\]
where:
- \(\left.F_{1}=(V J /(1-M)) \cdot\left(1-(1-F C)^{1-M}\right)\right)\)
- \(\left.\left.F_{2}=(1-F C)^{1+M}\right)\right)\)
- \(F_{3}=1-F C \cdot(1+M)\)

These equations are the same as used in [2], except that the temperature dependence of \(V J\) and \(F C\) is not modeled. This model does not include the diffusion capacitance term that affects performance for high frequency switching applications.

The Light-Emitting Diode block contains several options for modeling the dependence of the diode current-voltage relationship on the temperature during simulation. Temperature dependence of the junction capacitance is not modeled, this being a much smaller effect. For details, see the Diode reference page.

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices \(>\) Show thermal port. This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.

Use the thermal port to simulate the effects of generated heat and device temperature. For more information on using thermal ports and on the Thermal port tab parameters, see "Simulating Thermal Effects in Semiconductors".

\section*{Light-Emitting Diode}
Basic
Assumptions
and
Limitations

The Light-Emitting Diode block has the following limitations:
- When you select Use I-V curve data points for the Parameterization parameter, choose a pair of voltages near the diode turn-on voltage. Typically this is in the range from 0.05 to 1 Volt. Using values outside of this region may lead to numerical issues and poor estimates for \(I S\) and \(N\).
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

\section*{Light-Emitting Diode}

\section*{Dialog Main Tab \\ Box and Parameters}

\section*{Block Parameters: Light-Emitting Diode}

\section*{Light-Emitting Diode}

This block represents a light-emitting diode. Structurally it consists of an exponential diode in series with a current sensor. The optical power presented at the signal port W is equal to the product of the current flowing through the diode and the Optical power per unit current parameter.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Main & Ohmic Resistance & Junction Capacitance & Temperature Dependence \\
\hline Optical power per unit current: & 0.005 & \\
Parameterization: & Use I-V curve data points & W/A \\
Currents [I1 I2]: & {\([0.00170 .003]\)} & A \\
Voltages [V1 V2]: & {\([0.91 .05]\)} & V \\
Measurement temperature: & 25 & C \\
\hline
\end{tabular}

\section*{Optical power per unit current}

The amount of optical power the light-emitting diode generates per unit of current flowing through the diode. The default value is 0.005 W/A.

\section*{Parameterization}

Select one of the following methods for model parameterization:
- Use I-V curve data points - Specify measured data at two points on the diode I-V curve. This is the default method.

\section*{Light-Emitting Diode}
- Use parameters IS and N - Specify saturation current and emission coefficient.

\section*{Currents [I1 I2]}

A vector of the current values at the two points on the diode I-V curve that the block uses to calculate \(I S\) and \(N\). This parameter is only visible when you select Use I-V curve data points for the Parameterization parameter. The default value is [ 0.0017 0.003 ] A.

\section*{Voltages [V1 V2]}

A vector of the voltage values at the two points on the diode I-V curve that the block uses to calculate \(I S\) and \(N\). This parameter is only visible when you select Use I-V curve data points for the Parameterization parameter. The default value is [ 0.9 1.05 ] V.

\section*{Saturation current IS}

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. This parameter is only visible when you select Use parameters IS and \(N\) for the Parameterization parameter. The default value is \(5 \mathrm{e}-5 \mathrm{~A}\).

\section*{Measurement temperature}

The temperature at which IS or the I-V curve was measured. The default value is 25 C .

\section*{Emission coefficient \(\mathbf{N}\)}

The diode emission coefficient or ideality factor. This parameter is only visible when you select Use parameters IS and \(N\) for the Parameterization parameter. The default value is 10 .

\section*{Light-Emitting Diode}

\section*{Ohmic Resistance Tab}

\section*{Block Parameters: Light-Emitting Diode}

\section*{Light-Emitting Diode}

This block represents a light-emitting diode. Structurally it consists of an exponential diode in series with a current sensor. The optical power presented at the signal port W is equal to the product of the current flowing through the diode and the Optical power per unit current parameter.

\section*{Parameters}
Main Ohmic Resistance Junction Capacitance \(\quad\) Temperature Dependence

Ohmic resistance, RS:
0.1

Ohm

Ohmic resistance RS
The series diode connection resistance. The default value is \(0.1 \Omega\).

\section*{Light-Emitting Diode}

\section*{Junction Capacitance Tab}

Block Parameters: Light-Emitting Diode

\section*{Light-Emitting Diode}

This block represents a light-emitting diode. Structurally it consists of an exponential diode in series with a current sensor. The optical power presented at the signal port W is equal to the product of the current flowing through the diode and the Optical power per unit current parameter.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline Main & Ohmic Resistance & Junction Capacitance \\
& Temperature Dependence & \\
\hline Junction capacitance: & Fixed or zero junction capacitance & \\
\begin{tabular}{lll|}
\hline Zero-bias junction capacitance, & 20 & pF \\
CJ0: & & \\
& & \\
& & \\
\hline
\end{tabular} \\
\hline
\end{tabular}


\section*{Junction capacitance}

Select one of the following options for modeling the junction capacitance:
- Fixed or zero junction capacitance - Model the junction capacitance as a fixed value.
- Use C-V curve data points - Specify measured data at three points on the diode C-V curve.
- Use parameters CJO, VJ, M \& FC - Specify zero-bias junction capacitance, junction potential, grading coefficient, and forward-bias depletion capacitance coefficient.

\section*{Light-Emitting Diode}

\section*{Zero-bias junction capacitance CJ0}

The value of the capacitance placed in parallel with the exponential diode term. This parameter is only visible when you select Fixed or zero junction capacitance or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 20 pF .

\section*{Reverse bias voltages [VR1 VR2 VR3]}

A vector of the reverse bias voltage values at the three points on the diode C-V curve that the block uses to calculate CJO, VJ, and \(M\). This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [ \(\left.\begin{array}{llll}0.1 & 10 & 100\end{array}\right] \mathrm{V}\).

\section*{Corresponding capacitances [C1 C2 C3]}

A vector of the capacitance values at the three points on the diode \(\mathrm{C}-\mathrm{V}\) curve that the block uses to calculate CJO, VJ, and M. This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [ \(\left.\begin{array}{lll}15 & 10 & 2\end{array}\right] \mathrm{pF}\).

\section*{Junction potential VJ}

The junction potential. This parameter is only visible when you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 1 V .

\section*{Grading coefficient \(M\)}

The grading coefficient. This parameter is only visible when you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

\section*{Capacitance coefficient FC}

Fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Use C-V curve data points or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

\section*{Light-Emitting Diode}

\section*{Temperature Dependence Tab}

Block Parameters: Light-Emitting Diode

\section*{\(\times\)}

\section*{Light-Emitting Diode}

This block represents a light-emitting diode. Structurally it consists of an exponential diode in series with a current sensor. The optical power presented at the signal port W is equal to the product of the current flowing through the diode and the Optical power per unit current parameter.

\section*{Parameters}
\begin{tabular}{|l|c|c|}
\hline Main & Ohmic Resistance & Junction Capacitance \\
Paramperature Dependence \\
\hline Parameterization: & & \\
\\
& & \\
\\
& & \\
\hline
\end{tabular}

\section*{Parameterization}

Select one of the following methods for temperature dependence parameterization:
- None Simulate at parameter measurement temperature - Temperature dependence is not modeled, or the model is simulated at the measurement temperature \(T_{\mathrm{m} 1}\) (as specified by the Measurement temperature parameter on the Main tab). This is the default method.
- Use an I-V data point at second measurement temperature T2 - If you select this option, you specify a second measurement temperature \(T_{\mathrm{m} 2}\), and the current

\section*{Light-Emitting Diode}
and voltage values at this temperature. The model uses these values, along with the parameter values at the first measurement temperature \(T_{\mathrm{m} 1}\), to calculate the energy gap value.
- Specify saturation current at second measurement temperature T2 - If you select this option, you specify a second measurement temperature \(T_{\mathrm{m} 2}\), and saturation current value at this temperature. The model uses these values, along with the parameter values at the first measurement temperature \(T_{\mathrm{m} 1}\), to calculate the energy gap value.
- Specify the energy gap EG - Specify the energy gap value directly.

\section*{Current I1 at second measurement temperature}

Specify the diode current \(I 1\) value when the voltage is \(V 1\) at the second measurement temperature. This parameter is only visible when you select Use an I-V data point at second measurement temperature T2 for the Parameterization parameter. The default value is 0.0034 A .

Voltage V1 at second measurement temperature
Specify the diode voltage \(V 1\) value when the current is \(I 1\) at the second measurement temperature. This parameter is only visible when you select Use an I-V data point at second measurement temperature T2 for the Parameterization parameter. The default value is 1.05 V .

Saturation current, IS, at second measurement temperature Specify the saturation current \(I S\) value at the second measurement temperature. This parameter is only visible when you select Specify saturation current at second measurement temperature T2 for the Parameterization parameter. The default value is \(1.8 \mathrm{e}-4 \mathrm{~A}\).

\section*{Second measurement temperature}

Specify the value for the second measurement temperature. This parameter is only visible when you select either Use an I-V data point at second measurement temperature T2

\section*{Light-Emitting Diode}
or Specify saturation current at second measurement temperature T2 for the Parameterization parameter. The default value is 125 C .

\section*{Energy gap parameterization}

This parameter is only visible when you select Specify the energy gap EG for the Parameterization parameter. It lets you select a value for the energy gap from a list of predetermined options, or specify a custom value:
- Use nominal value for silicon (EG=1.11eV) - This is the default.
- Use nominal value for 4 H -SiC silicon carbide ( \(\mathrm{EG}=3.23 \mathrm{eV}\) )
- Use nominal value for \(6 \mathrm{H}-\mathrm{SiC}\) silicon carbide ( \(\mathrm{EG}=3.00 \mathrm{eV}\) )
- Use nominal value for germanium (EG=0.67eV)
- Use nominal value for gallium arsenide (EG=1.43eV)
- Use nominal value for selenium (EG=1.74eV)
- Use nominal value for Schottky barrier diodes ( \(\mathrm{EG}=0.69 \mathrm{eV}\) )
- Specify a custom value - If you select this option, the Energy gap, EG parameter appears in the dialog box, to let you specify a custom value for \(E G\).

\section*{Energy gap, EG}

Specify a custom value for the energy gap, \(E G\). This parameter is only visible when you select Specify a custom value for the Energy gap parameterization parameter. The default value is 1.11 eV .

\section*{Saturation current temperature exponent parameterization} Select one of the following options to specify the saturation current temperature exponent value:

\section*{Light-Emitting Diode}
- Use nominal value for pn-junction diode (XTI=3) This is the default.
- Use nominal value for Schottky barrier diode (XTI=2)
- Specify a custom value - If you select this option, the Saturation current temperature exponent, XTI parameter appears in the dialog box, to let you specify a custom value for XTI.

\section*{Saturation current temperature exponent, XTI}

Specify a custom value for the saturation current temperature exponent, XTI. This parameter is only visible when you select Specify a custom value for the Saturation current temperature exponent parameterization parameter. The default value is 3 .

\section*{Device simulation temperature}

Specify the value for the temperature \(T_{\mathrm{s}}\), at which the device is to be simulated. The default value is 25 C .

\section*{Ports The block has the following ports:}

W
Optical output power.
\(+\)
Electrical conserving port associated with the diode positive terminal.

Electrical conserving port associated with the diode negative terminal.

\section*{References \\ [1] H. Ahmed and P.J. Spreadbury. Analogue and digital electronics for engineers. 2nd Edition, Cambridge University Press, 1984.}
[2] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.

\section*{Light-Emitting Diode}

\author{
See Also Diode, Optocoupler, Photodiode
}

\section*{Purpose}

Model integrated circuit multiplier

\section*{Library}

Description


Integrated Circuits to the output port:

The Multiplier block models an integrated circuit multiplier. The block implements the following equation, which defines the voltage applied
\[
V_{o u t}=A\left(\frac{\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)}{K}-\left(Z_{1}-Z_{2}\right)\right)
\]
where \(X_{1}, X_{2}, Y_{1}, Y_{2}, Z_{1}, Z_{2}\) are the voltages presented at the input ports, \(A\) is the gain, and \(K\) is the scale factor.

In a typical multiplication circuit, the output is fed back into input Z1, which results in the following gain (assuming that \(A\) is large):
\[
V_{\text {out }}=\left(\frac{\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)}{K}+Z_{2}\right)
\]

The value of the scale factor \(K\) is usually altered by an external resistor bias network. The Multiplier block implements \(K\) as an internal gain, and the external bias network is not necessary for system simulation. A typical value for \(K\) is 10 , with a typical adjustment down to 3 .

You can use the Multiplier block to implement a number of other functions, as well as multiplication. Examples include division, squares, and square roots. For example circuits, consult manufacturer datasheets.

The following figure shows the internal model structure of the Multiplier block. It includes the Band-Limited Op-Amp block to model finite bandwidth and slew-rate limiting.

\section*{Multiplier}


The next figure shows one of the differential subsystem blocks. All three differential subsystem blocks are identical in structure.


\section*{Multiplier}

\section*{Basic Assumptions and Limitations}

The Multiplier block has the following limitations:
- Only differential limiting of the inputs is implemented. You must ensure that the absolute values of the inputs you use keep the actual device operating in its linear region.
- Output current is such that the integrated circuit is operating in the linear I-V region, which can be approximated by a voltage source plus a series output resistance.
- Input offset voltage is not modeled, and the input voltage-current relationship is treated as linear within the differential signal voltage range.

Dialog
Box and Parameters

\section*{Main Tab}


\section*{Multiplier}

\section*{Scaling factor, \(K\)}

The scaling factor \(K\) in the equation that defines output voltage. Datasheets sometimes refer to it as the scale factor, or SF. The default value is 10 V .

Gain, A
The gain of the internal operational amplifier, corresponding to the gain \(A\) in the equation that defines output voltage. The default value is 3 e 3 .

\section*{Inputs Tab}


\section*{Differential resistance, Rin}

Each of the differential inputs is approximated as a linear resistor with value Rin. Set this value to the datasheet value for differential resistance. The default value is \(1 \mathrm{e} 7 \Omega\).

\section*{Multiplier}

\section*{Differential signal voltage range}

This value, Vdiff_max, is used to limit the magnitude of each of the three differential input voltages. Set this value to the datasheet value for differential signal voltage range. The default value is 10 V .

\section*{Outputs Tab}


\section*{Output resistance, Rout}

The multiplier output stage is modeled as a voltage source plus series resistor inside the Band-Limited Op-Amp block. This parameter specifies the value of this series resistor. The default value is \(0.1 \Omega\).

\section*{Minimum output, Vmin}

The lower limit of the output voltage. The default value is -11 V .

\section*{Maximum output, Vmax}

The upper limit of the output voltage. The default value is 11 V .

\section*{Multiplier}

\section*{Maximum slew rate, Vdot}

The maximum positive or negative rate of change of output voltage magnitude. The default value is \(20 \mathrm{~V} / \mu \mathrm{s}\).

\section*{Bandwidth, f}

The bandwidth of the Band-Limited Op-Amp block. The default value is 1 MHz .

\section*{Initial output voltage, V0}

The value of the initial Multiplier block output if the Start simulation from steady-state option is not selected in the Solver block. The default value is 0 V .

\section*{Ports The block has six electrical conserving ports that serve as signal input ports and one electrical conserving port that outputs the multiplied signal.}

\section*{Purpose}

Model N-Channel IGBT

\section*{Library}

Description
Semiconductor Devices

The N-Channel IGBT block models a PNP Bipolar transistor driven by an N -Channel MOSFET, as shown in the following figure:


The MOSFET source is connected to the bipolar transistor collector, and the MOSFET drain is connected to the bipolar transistor base. The MOSFET uses the equations shown in the N-Channel MOSFET block reference page. The bipolar transistor uses the equations shown in the PNP Bipolar Transistor block reference page, but with the addition of an emission coefficient parameter \(N\) that scales \(k T / q\).
The N-Channel IGBT block uses the on and off characteristics you specify in the block dialog box to estimate the parameter values for the underlying N-Channel MOSFET and PNP bipolar transistor.

The block uses the off characteristics to calculate the base-emitter voltage, \(V_{b e}\), and the saturation current, \(I_{S}\).
When the transistor is off, the gate-emitter voltage is zero and the IGBT base-collector voltage is large, so the PNP base and collector current equations simplify to:
\[
\begin{aligned}
& I_{b}=0=-I_{s}\left[\frac{1}{\beta_{F}}\left(e^{-q V_{b e} /(N k T)}-1\right)-\frac{1}{\beta_{R}}\right] \\
& I_{c}=-I_{s}\left[e^{-q V_{b e} /(N k T)}\left(1+\frac{V_{b c}}{V_{A F}}\right)+\frac{1}{\beta_{R}}\right]
\end{aligned}
\]
where \(N\) is the Emission coefficient, \(\mathbf{N}\) parameter value, \(V_{A F}\) is the forward Early voltage, and \(I_{c}\) and \(I_{b}\) are defined as positive flowing into the collector and base, respectively. See the PNP Bipolar Transistor reference page for definitions of the remaining variables. The first equation can be solved for \(V_{b e}\).

The base current is zero in the off-condition, and hence \(I_{c}=-I_{c e s}\), where \(I_{\text {ces }}\) is the Zero gate voltage collector current. The base-collector voltage, \(V_{b c}\), is given by \(V_{b c}=V_{c e s}+V_{c e s}\), where \(V_{c e s}\) is the voltage at which \(I_{c e s}\) is measured. Hence we can rewrite the second equation as follows:
\[
I_{c e s}=I_{s}\left[e^{-q V_{b e} /(N k T)}\left(1+\frac{V_{c e s}+V_{b e}}{V_{A F}}\right)+\frac{1}{\beta_{R}}\right]
\]

The block sets \(\beta_{R}\) and \(\beta_{F}\) to typical values of 1 and 50 , so these two equations can be used to solve for \(V_{b e}\) and \(I_{S}\) :
\[
\begin{aligned}
& V_{b e}=\frac{-N k T}{q} \log \left(1+\frac{\beta_{F}}{\beta_{R}}\right) \\
& I_{s}=\frac{I_{c}}{e^{-q V_{b e} /(N k T)}+\frac{1}{\beta_{R}}}
\end{aligned}
\]

Note The block does not require an exact value for \(\beta_{F}\) because it can adjust the MOSFET gain \(K\) to ensure the overall device gain is correct.

The block parameters Collector-emitter saturation voltage, Vce(sat) and Collector current at which Vce(sat) is defined are used to determine \(V_{b e(s a t)}\) by solving the following equation:
\[
I_{c e(s a t)}=I_{s}\left[e^{-q V_{b e(s a t)} /(N k T)}\left(1+\frac{V_{c e(s a t)}+V_{b e(s a t)}}{V_{A F}}\right)+\frac{1}{\beta_{R}}\right]
\]

Given this value, the block calculates the MOSFET gain, \(K\), using the following equation:
\[
I_{d s}=I_{b}=K\left[\left(V_{G E(s a t)}-V_{t h}\right) V_{d s}-\frac{V_{d s}{ }^{2}}{2}\right]
\]
where \(V_{t h}\) is the Gate-emitter threshold voltage, Vge(th) parameter value and \(V_{G E(s a t)}\) is the Gate-emitter voltage at which Vce(sat) is defined parameter value.
\(V_{d s}\) is related to the transistor voltages as \(V_{d s}=V_{c e}-V_{b e}\). The block substitutes this relationship for \(V_{d s}\), sets the base-emitter voltage and base current to their saturated values, and rearranges the MOSFET equation to give
\[
K=\frac{I_{b(\text { sat })}}{\left[\left(V_{G E(s a t)}-V_{t h}\right)\left(V_{b e(s a t)}+V_{c e(s a t)}\right)-\frac{\left(V_{b e(s a t)}+V_{c e(s a t)}\right)^{2}}{2}\right]}
\]
where \(V_{c e(s a t)}\) is the Collector-emitter saturation voltage, Vce(sat) parameter value.

These calculations ensure the zero gate voltage collector current and collector-emitter saturation voltage are exactly met at these two specified conditions. However, the current-voltage plots are very sensitive to the emission coefficient \(N\) and the precise value of \(V_{t h}\). If
the manufacturer datasheet gives current-voltage plots for different \(V_{G E}\) values, then the \(N\) and \(V_{t h}\) can be tuned by hand to improve the match.

\section*{Charge Model}

The block models gate junction capacitance as a fixed gate-emitter capacitance \(C_{G E}\) and either a fixed or a nonlinear gate-collector capacitance \(C_{G C}\).
If you select Specify using equation parameters directly for the Parameterization parameter in the Junction Capacitance tab, you specify the Gate-emitter junction capacitance and Gate-collector junction capacitance parameters directly. Otherwise, the block derives them from the Input capacitance Cies and Reverse transfer capacitance Cres parameter values. The two parameterizations are related as follows:
- \(C_{G E}=\) Cres
- \(C_{G C}=\) Cies - Cres

If you select the Gate-collector charge function is nonlinear option for the Charge-voltage linearity parameter, then the gate-collector charge relationship is defined by the piecewise-linear function shown in the following figure.


With this nonlinear capacitance, the gate-emitter and collector-emitter voltage profiles take the form shown in the next figure, where the collector-emitter voltage fall has two regions (labeled 2 and 3) and the gate-emitter voltage has two time-constants (before and after the threshold voltage \(V_{\text {th }}\) ):


You can determine the capacitor values for Cies, Cres, and \(C_{\text {ox }}\) as follows, assuming that the IGBT gate is driven through an external resistance \(R_{\mathrm{G}}\) :

1 Set Cies to get correct time-constant for \(V_{\mathrm{GE}}\) in Region 1. The time constant is defined by the product of Cies and \(R_{G}\). Alternatively, you can use a datasheet value for Cies.

2 Set Cres so as to achieve the correct \(V_{\text {CE }}\) gradient in Region 2. The gradient is given by \(\left(V_{\mathrm{GE}}-V_{\mathrm{th}}\right) /\left(\right.\) Cres \(\left.\cdot R_{\mathrm{G}}\right)\).

3 Set \(V_{\text {Cox }}\) to the voltage at which the \(V_{\text {CE }}\) gradient changes minus the threshold voltage \(V\) th.

4 Set \(C_{\text {ox }}\) to get correct Miller length and time constant in Region 4.
Because the underlying model is a simplification of an actual charge distribution, some iteration of these four steps may be required to get a best overall fit to measured data. The collector current tail when the IGBT is turned off is determined by the Total forward transit time parameter.

\section*{Fine-Tuning the Current-Voltage Characteristics}

Use the parameters on the Advanced tab to fine-tune the current-voltage characteristics of the modeled device. To use these additional parameters effectively, you will need a manufacturer datasheet that provides plots of the collector current versus collector-emitter voltage for different values of gate-emitter voltage. The parameters on the Advanced tab have the following effects:
- The Emission coefficient, N parameter controls the shape of the current-voltage curves around the origin.
- The Collector resistance, RC and Emitter resistance, RE parameters affect the slope of the current-voltage curve at higher currents, and when fully turned on by a high gate-emitter voltage.
- The Forward Early voltage, VAF parameter affects the shape of the current-voltage curves for gate-emitter voltages around the Gate-emitter threshold voltage, Vge(th).

\section*{Modeling Temperature Dependence}

The default behavior is that dependence on temperature is not modeled, and the device is simulated at the temperature for which you provide block parameters. You can optionally include modeling the dependence of the transistor static behavior on temperature during simulation. Temperature dependence of the junction capacitances is not modeled, this being a much smaller effect.

Temperature dependence is modeled by the temperature dependence of the constituent components. See the N-Channel MOSFET and PNP Bipolar Transistor block reference pages for further information on the defining equations.

Some datasheets do not provide information on the zero gate voltage collector current, Ices, at a higher measurement temperature. In this case, you can alternatively specify the energy gap, \(E G\), for the device, using a typical value for the semiconductor type. For silicon, the energy gap is usually 1.11 eV .

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices \(>\) Show thermal port. This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.

Use the thermal port to simulate the effects of generated heat and device temperature. For more information on using thermal ports and on the Thermal port tab parameters, see "Simulating Thermal Effects in Semiconductors".

\section*{Basic Assumptions and Limitations}

The model is based on the following assumptions:
- This block does not allow you to specify initial conditions on the junction capacitances. If you select the Start simulation from steady state option in the Solver Configuration block, the block solves the initial voltages to be consistent with the calculated steady state. Otherwise, voltages are zero at the start of the simulation.
- You may need to use nonzero junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.
- The block does not account for temperature-dependent effects on the junction capacitances.

\section*{N-Channel IGBT}

\section*{Dialog Main Tab \\ Box and Parameters}


\section*{Zero gate voltage collector current, Ices}

The collector current that flows when the gate-emitter voltage is set to zero, and a large collector-emitter voltage is applied, that is, the device is in the off-state. The value of the large collector-emitter voltage is defined by the parameter Voltage at which Ices is defined. The default value is 2 mA .

Voltage at which Ices is defined
The voltage used when measuring the Zero gate voltage collector current, Ices. The default value is 600 V .

\section*{Gate-emitter threshold voltage, Vge(th)}

The threshold voltage used in the MOSFET equations. The default value is 6 V .

\section*{Collector-emitter saturation voltage, Vce(sat)}

The collector-emitter voltage for a typical on-state as specified by the manufacturer. The default value is 2.8 V .

Collector current at which Vce(sat) is defined
The collector-emitter current when the gate-emitter voltage is \(V_{\text {ge(sat) }}\) and collector-emitter voltage is \(V_{\text {ce(sat) }}\). The default value is 400 A.

Gate-emitter voltage at which Vce(sat) is defined
The gate voltage used when measuring \(V_{\text {ce(sat) }}\) and \(I_{\text {ce(sat). }}\). The default value is 10 V .

\section*{Measurement temperature}

The temperature for which the parameters are quoted. The default value is 25 C .

\section*{N-Channel IGBT}

\section*{Junction Capacitance Tab}

\section*{Block Parameters: N-Channel IGBT}

N -Channel IGBT
This block represents an N -channel IGBT. The underlying model is based on a PNP bipolar transistor plus an N -channel MOSFET whose parameters are derived from the IGBT datasheet parameters. It is assumed that both the MOSFET gate resistance is infinite. There is no integral reverse diode, and reverse breakdown is not modeled.

Parameters
\begin{tabular}{|l|l|l|l|}
\hline Main & Junction Capacitance & Advanced & Temperature Dependence \\
& & \\
\hline Parameterization: & Specify from a datasheet & \\
Input capacitance, Cies: & 26.4 & nF \\
Reverse transfer capacitance, Cres: & 2.7 & nF \\
Charge-voltage linearity: & Gate-collector capacitance is constant & \\
Total forward transit time: & 0 & us \\
\hline
\end{tabular}

\section*{Parameterization}

Select one of the following methods for block parameterization:
- Specify from a datasheet - Provide parameters that the block converts to junction capacitance values. This is the default method.
- Specify using equation parameters directly - Provide junction capacitance parameters directly.

\section*{Input capacitance, Cies}

The gate-emitter capacitance with the collector shorted to the source. This parameter is only visible when you select Specify from a datasheet for the Model junction capacitance parameter. The default value is 26.4 nF .

\section*{Reverse transfer capacitance, Cres}

The collector-gate capacitance with the emitter connected to ground. This parameter is only visible when you select Specify from a datasheet for the Model junction capacitance parameter. The default value is 2.7 nF .

\section*{Gate-emitter junction capacitance}

The value of the capacitance placed between the gate and the emitter. This parameter is only visible when you select Specify using equation parameters directly for the Model junction capacitance parameter. The default value is 23.7 nF .

\section*{Gate-collector junction capacitance}

The value of the capacitance placed between the gate and the collector. This parameter is only visible when you select Specify using equation parameters directly for the Model junction capacitance parameter. The default value is 2.7 nF .

\section*{Charge-voltage linearity}

Select whether gate-drain capacitance is fixed or nonlinear:
- Gate-collector capacitance is constant - The capacitance value is constant and defined according to the selected parameterization option, either directly or derived from a datasheet. This is the default method.
- Gate-collector charge function is nonlinear - The gate-collector charge relationship is defined according to the piecewise-nonlinear function described in "Charge Model" on page 1-270. Two additional parameters appear to let you define the gate-collector charge function.

\section*{Gate-collector oxide capacitance}

The gate-collector capacitance when the device is on and the collector-gate voltage is small. This parameter is only visible when you select Gate-collector charge function is nonlinear for the Charge-voltage linearity parameter. The default value is 20 nF .

\section*{Collector-gate voltage below which oxide capacitance becomes active}

The collector-gate voltage at which the collector-gate capacitance switches between off-state ( \(C_{\mathrm{GC}}\) ) and on-state ( \(C_{\mathrm{ox}}\) ) capacitance values. This parameter is only visible when you select Gate-collector charge function is nonlinear for the Charge-voltage linearity parameter. The default value is -5 V .

\section*{Total forward transit time}

The forward transit time for the PNP transistor used as part of the underlying IGBT model. It affects how quickly charge is removed from the channel when the IGBT is turned off. The default value is \(0 \mu \mathrm{~s}\).

\section*{N-Channel IGBT}

\section*{Advanced Tab}


\section*{Emission coefficient, N}

The emission coefficient or ideality factor of the bipolar transistor.
The default value is 1 .
Forward Early voltage, VAF
The forward Early voltage for the PNP transistor used in the IGBT model. See the PNP Bipolar Transistor block reference page for more information. The default value is 200 V .

\section*{Collector resistance, RC}

Resistance at the collector. The default value is 0.001 Ohm .

\section*{Emitter resistance, RE}

Resistance at the emitter. The default value is 0.001 Ohm .

\section*{Forward current transfer ratio BF}

Ideal maximum forward current gain for the PNP transistor used in the IGBT model. See the PNP Bipolar Transistor block reference page for more information. The default value is 50 .

\section*{N-Channel IGBT}

\section*{Temperature Dependence Tab}

\section*{Block Parameters: N-Channel IGBT}

\section*{N -Channel IGBT}

This block represents an N-channel IGBT. The underlying model is based on a PNP bipolar transistor plus an N-channel MOSFET whose parameters are derived from the IGBT datasheet parameters. It is assumed that both the MOSFET gate resistance is infinite. There is no integral reverse diode, and reverse breakdown is not modeled.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Main & Junction Capacitance & Advanced & Temperature Dependence \\
\hline
\end{tabular}

\section*{Parameterization}

Select one of the following methods for temperature dependence parameterization:
- None Simulate at parameter measurement temperature - Temperature dependence is not modeled, and none of the other parameters on this tab are visible. This is the default method.
- Specify Ices and Vce(sat) at second measurement temperature - Model temperature-dependent effects by providing values for the zero gate voltage collector current, Ices, and collector-emitter voltage, \(V_{\text {ce(sat) }}\), at the second measurement temperature.
- Specify Vce(sat) at second measurement temperature plus the energy gap, EG - Use this option when the datasheet does not provide information on the zero gate voltage collector current, Ices, at a higher measurement temperature.

\section*{Energy gap, EG}

Energy gap value. This parameter is only visible when you select Specify Vce(sat) at second measurement temperature plus the energy gap, EG for the Parameterization parameter. The default value is 1.11 eV .

\section*{Zero gate voltage collector current, Ices, at second measurement temperature}

The zero gate collector current value at the second measurement temperature. This parameter is only visible when you select Specify Ices and Vce(sat) at second measurement temperature for the Parameterization parameter. The default value is 100 mA .

\section*{Collector-emitter saturation voltage, Vce(sat), at second measurement temperature}

The collector-emitter saturation voltage value at the second measurement temperature, and when the collector current and gate-emitter voltage are as defined by the corresponding parameters on the Main tab. The default value is 3 V .

\section*{Second measurement temperature}

Second temperature \(T_{\mathrm{m} 2}\) at which Zero gate voltage collector current, Ices, at second measurement temperature and Collector-emitter saturation voltage, Vce(sat), at second measurement temperature are measured. The default value is 125 C.

\section*{Saturation current temperature exponent, XTI}

The saturation current exponent value for your device type. If you have graphical data for the value of Ices as a function of temperature, you can use it to fine-tune the value of XTI. The default value is 3 .

Mobility temperature exponent, BEX
Mobility temperature coefficient value. You can use the default value for most devices. If you have graphical data for \(V_{c e(s a t)}\) at different temperatures, you can use it to fine-tune the value of \(B E X\). The default value is -1.5 .

\section*{Device simulation temperature}

Temperature \(T_{\mathrm{s}}\) at which the device is simulated. The default value is 25 C .

Ports The block has the following ports:

C
Electrical conserving port associated with the PNP emitter terminal.

G
Electrical conserving port associated with the MOSFET gate terminal.

E
Electrical conserving port associated with the PNP collector terminal.

\section*{N-Channel JFET}

\section*{Purpose}

Model N-Channel JFET

\section*{Library}

Semiconductor Devices
Description
The N-Channel JFET block uses the Shichman and Hodges equations to represent an N -Channel JFET using a model with the following structure:


G is the transistor gate, D is the transistor drain, and S is the transistor source. The drain current, \(I_{\mathrm{D}}\), depends on the region of operation and whether the transistor is operating in normal or inverse mode.
- In normal mode ( \(V_{\mathrm{DS}} \geq 0\) ), the block provides the following relationship between the drain current \(I_{\mathrm{D}}\) and the drain-source voltage \(V_{\mathrm{DS}}\).
\begin{tabular}{l|l|l}
\hline Region & \begin{tabular}{l} 
Applicable \\
Range of \(\boldsymbol{V}_{\mathbf{G S}}\) \\
and \(\mathbf{V}_{\mathrm{DS}}\) Values
\end{tabular} & Corresponding I I Equation \\
\hline Off & \(V_{\mathrm{GS}}-V_{\mathrm{t} 0} \leq 0\) & \(I_{\mathrm{D}}=0\) \\
\hline Linear & \(0<V_{\mathrm{DS}}<V_{\mathrm{GS}}-V_{\mathrm{t} 0}\) & \(I_{\mathrm{D}}=\beta V_{\mathrm{DS}}\left(2\left(V_{\mathrm{GS}}-V_{\mathrm{t} 0}\right)-V_{\mathrm{DS}}\right)\left(1+\lambda V_{\mathrm{DS}}\right)\) \\
\hline Saturated & \(0<V_{\mathrm{GS}}-V_{\mathrm{t} 0} \leq V_{\mathrm{DS}}\) & \(I_{\mathrm{D}}=\beta\left(V_{\mathrm{GS}}-V_{\mathrm{t} 0}\right)^{2}\left(1+\lambda V_{\mathrm{DS}}\right)\) \\
\hline
\end{tabular}

\section*{N-Channel JFET}
- In inverse mode ( \(V_{\mathrm{DS}}<0\) ), the block provides the following relationship between the drain current \(I_{\mathrm{D}}\) and the drain-source voltage \(V_{\mathrm{DS}}\).
\begin{tabular}{l|l|l}
\hline Region & \begin{tabular}{l} 
Applicable \\
Range of \(\boldsymbol{V}_{\mathbf{G S}}\) \\
and \(\boldsymbol{V}_{\mathrm{DS}}\) Values
\end{tabular} & Corresponding \(I_{\mathbf{D}}\) Equation \\
\hline Off & \(V_{\mathrm{GS}}-V_{\mathrm{t} 0} \leq 0\) & \(I_{\mathrm{D}}=0\) \\
\hline Linear & \begin{tabular}{l}
\(0<-V_{\mathrm{DS}}<V_{\mathrm{GS}}-\) \\
\(V_{\mathrm{t} 0}\)
\end{tabular} & \(I_{\mathrm{D}}=\beta V_{\mathrm{DS}}\left(2\left(V_{\mathrm{GD}}-V_{\mathrm{t} 0}\right)+V_{\mathrm{DS}}\right)\left(1-\lambda V_{\mathrm{DS}}\right)\) \\
\hline Saturated & \(0<V_{\mathrm{GS}}-V_{\mathrm{t} 0} \leq-V_{\mathrm{DS}}\) & \(I_{\mathrm{D}}=\beta\left(V_{\mathrm{GD}}-V_{\mathrm{t} 0}\right)^{2}\left(1-\lambda V_{\mathrm{DS}}\right)\) \\
\hline
\end{tabular}

In the preceding equations:
- \(V_{\mathrm{GS}}\) is the gate-source voltage.
- \(V_{\mathrm{GD}}\) is the gate-drain voltage.
- \(V_{\mathrm{t} 0}\) is the threshold voltage. If you select Specify using equation parameters directly for the Parameterization parameter, \(V_{\mathrm{t} 0}\) is the Threshold voltage parameter value. Otherwise, the block calculates \(V_{\mathrm{t} 0}\) from the datasheet parameters you specify.
- \(\beta\) is the transconductance parameter. If you select Specify using equation parameters directly for the Parameterization parameter, \(\beta\) is the Transconductance parameter parameter value. Otherwise, the block calculates \(\beta\) from the datasheet parameters you specify.
- \(\lambda\) is the channel-length modulation parameter. If you select Specify using equation parameters directly for the Parameterization parameter, \(\lambda\) is the Channel-length modulation parameter value. Otherwise, the block calculates \(\lambda\) from the datasheet parameters you specify.

The currents in each of the diodes satisfy the exponential diode equation

\section*{N-Channel JFET}
\[
\begin{aligned}
& I_{G D}=I S \cdot\left(e^{\frac{q V_{G D}}{k T_{m 1}}}-1\right) \\
& I_{G S}=I S \cdot\left(e^{\frac{q V_{G S}}{k T_{m 1}}}-1\right)
\end{aligned}
\]
where:
- IS is the saturation current. If you select Specify using equation parameters directly for the Parameterization parameter, \(I S\) is the Saturation current parameter value. Otherwise, the block calculates \(I S\) from the datasheet parameters you specify.
- \(q\) is the elementary charge on an electron (1.602176e-19 Coulombs).
- \(k\) is the Boltzmann constant (1.3806503e-23 J/K).
- \(T_{\mathrm{m} 1}\) is the measurement temperature. The value comes from the Measurement temperature parameter.

The block models gate junction capacitance as a fixed gate-drain capacitance \(C_{G D}\) and a fixed gate-source capacitance \(C_{G S}\). If you select Specify using equation parameters directly for the Parameterization parameter, you specify these values directly using the Gate-drain junction capacitance and Gate-source junction capacitance parameters. Otherwise, the block derives them from the Input capacitance Ciss and Reverse transfer capacitance Crss parameter values. The two parameterizations are related as follows:
- \(C_{G D}=\) Crss
- \(C_{G S}=\) Ciss - Crss

\section*{Modeling Temperature Dependence}

The default behavior is that dependence on temperature is not modeled, and the device is simulated at the temperature for which you provide block parameters. You can optionally include modeling the dependence of the transistor static behavior on temperature during simulation. Temperature dependence of the junction capacitances is not modeled, this being a much smaller effect.

When including temperature dependence, the transistor defining equations remain the same. The measurement temperature value, \(T_{\mathrm{m} 1}\), is replaced with the simulation temperature, \(T_{\mathrm{s}}\). The transconductance, \(\beta\), and the threshold voltage, \(V_{\mathrm{t} 0}\), become a function of temperature according to the following equations:
\[
\begin{aligned}
& \beta_{T s}=\beta_{T m 1}\left(\frac{T_{s}}{T_{m 1}}\right)^{B E X} \\
& V_{\mathrm{t} 0 \mathrm{~s}}=V_{\mathrm{t} 01}+a\left(T_{\mathrm{s}}-T_{\mathrm{m} 1}\right)
\end{aligned}
\]
where:
- \(T_{\mathrm{m} 1}\) is the temperature at which the transistor parameters are specified, as defined by the Measurement temperature parameter value.
- \(T_{\mathrm{s}}\) is the simulation temperature.
- \(\beta_{\mathrm{Tm} 1}\) is JFET transconductance at the measurement temperature.
- \(\beta_{\text {Ts }}\) is JFET transconductance at the simulation temperature. This is the transconductance value used in the JFET equations when temperature dependence is modeled.
- \(V_{\mathrm{t} 01}\) is the threshold voltage at measurement temperature.
- \(V_{\mathrm{t} 0 \mathrm{~s}}\) is the threshold voltage at simulation temperature. This is the threshold voltage value used in the JFET equations when temperature dependence is modeled.
- \(B E X\) is the mobility temperature exponent. A typical value of \(B E X\) is -1.5 .
- \(a\) is the gate threshold voltage temperature coefficient, \(d V_{\mathrm{th}} / d T\).

For most JFETS, you can use the default value of -1.5 for \(B E X\). Some datasheets quote the value for \(\alpha\), but most typically they provide the temperature dependence for the saturated drain current, \(I_{-} d s s\). Depending on the block parameterization method, you have two ways of specifying \(a\) :
- If you parameterize the block from a datasheet, you have to provide \(I \_d s s\) at a second measurement temperature. The block then calculates the value for \(\alpha\) based on this data.
- If you parameterize by specifying equation parameters, you have to provide the value for \(a\) directly.

If you have more data comprising drain current as a function of gate-source voltage for fixed drain-source voltage plotted at more than one temperature, then you can also use Simulink Design Optimization software to help tune the values for \(a\) and \(B E X\).

In addition, the saturation current term, \(I S\), in the gate-drain and gate-source current equations depends on temperature
\[
I S_{T s}=I S_{T m 1} \cdot\left(T_{s} / T_{m 1}\right)^{X T I} \cdot \exp \left(-\frac{E G}{k T_{s}}\left(1-T_{s} / T_{m 1}\right)\right)
\]
where:
- \(I S_{\mathrm{Tm} 1}\) is the saturation current at the measurement temperature.
- \(I S_{\mathrm{Ts}}\) is the saturation current at the simulation temperature. This is the saturation current value used in the bipolar transistor equations when temperature dependence is modeled.
- \(E G\) is the energy gap.
- \(k\) is the Boltzmann constant (1.3806503e-23 J/K).
- \(X T I\) is the saturation current temperature exponent.

Similar to a, you have two ways of specifying \(E G\) and XTI:
- If you parameterize the block from a datasheet, you have to specify the gate reverse current, \(I \_g s s\), at a second measurement temperature. The block then calculates the value for \(E G\) based on this data and assuming a p-n junction nominal value of 3 for XTI.
- If you parameterize by specifying equation parameters, you have to provide the values for \(E G\) and \(X T I\) directly. This option gives you most flexibility to match device behavior, for example, if you have a graph of \(I_{\_} g s s\) as a function of temperature. With this data you can use Simulink Design Optimization software to help tune the values for \(E G\) and XTI.

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.

Use the thermal port to simulate the effects of generated heat and device temperature. For more information on using thermal ports and on the Thermal port tab parameters, see "Simulating Thermal Effects in Semiconductors".
Basic
Assumptions
and
Limitations

The model is based on the following assumptions:
- This block does not allow you to specify initial conditions on the junction capacitances. If you select the Start simulation from steady state option in the Solver Configuration block, the block solves the initial voltages to be consistent with the calculated steady state. Otherwise, voltages are zero at the start of the simulation.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.
- The block does not account for temperature-dependent effects on the junction capacitances.
- When you specify \(I \_d s s\) at a second measurement temperature, it must be quoted for the same working point (that is, the same drain current and gate-source voltage) as for the \(I_{-} d s s\) value on the Main tab. Inconsistent values for \(I_{-} d s s\) at the higher temperature will result in unphysical values for \(\alpha\) and unrepresentative simulation results.
- You may need to tune the value of \(B E X\) to replicate the \(I_{\mathrm{D}}-V_{\mathrm{GS}}\) relationship (if available) for a given device. The value of \(B E X\) affects whether the \(I_{\mathrm{D}}-V_{\mathrm{GS}}\) curves for different temperatures cross each other, or not, for the ranges of \(I_{\mathrm{D}}\) and \(V_{\mathrm{GS}}\) considered.

\section*{N-Channel JFET}

\section*{Dialog Main Tab \\ Box and Parameters}

Block Parameters: N-Channel JFET
N -Channel JFET
This block represents an N -Channel JFET. The drain current Id for positive Vds (normal operation) is given by:
Id \(=0\) if \(\mathrm{Vgs}-\mathrm{Vt} 0<0\) (off)
\(\mathrm{Id}=\mathrm{B}^{*} \mathrm{Vds} \mathrm{S}^{*}\left[2^{*}(\mathrm{Vgs}-\mathrm{Vt0} 0)-\mathrm{Vds}\right]^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<\mathrm{Vds}<\mathrm{Vgs}-\mathrm{Vt0} 0\) (linear region)
Id \(=\mathrm{B}^{*}(\mathrm{Vgs}-\mathrm{Vt0} 0)^{\wedge} 2^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<\mathrm{Vgs}-\mathrm{Vt0} 0<\mathrm{Vds}\) (saturated region)
where B is the Transconductance parameter, Vt0 is the Threshold voltage, L is the Channel-length modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.

\section*{Parameters}


\section*{Parameterization}

Select one of the following methods for block parameterization:
- Specify from a datasheet - Provide parameters that the block converts to equations that describe the transistor. This is the default method.
- Specify using equation parameters directly - Provide equation parameters \(\beta, I S, V_{\mathrm{t} 0}\), and \(\lambda\).

\section*{Gate reverse current, I_gss}

The reverse current that flows in the diode when the drain and source are short-circuited and a large negative gate-source voltage is applied. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is -1 nA .

\section*{Saturated drain current, I_dss}

The current that flows when a large positive drain-source voltage is applied for a specified gate-source voltage. For a depletion-mode device, this gate-source voltage may be zero, in which case \(I_{-} d s s\) may be referred to as the zero-gate voltage drain current. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 3 mA .
I_dss measurement point, [V_gs V_ds]
A vector of the values of \(V_{\mathrm{GS}}\) and \(V_{\mathrm{DS}}\) at which \(I_{-} d s s\) is measured. Normally \(V_{\mathrm{GS}}\) is zero. \(V_{\mathrm{DS}}\) should be greater than zero. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is [ \(\left.0 \begin{array}{ll}15\end{array}\right] \mathrm{V}\).

\section*{Small-signal parameters, [g_fs g_os]}

A vector of the values of \(g \_f s\) and \(g \_o s . ~ g \_f s\) is the forward transfer conductance, that is, the conductance for a fixed drain-source voltage. g_os is the output conductance, that is, the conductance for a fixed gate-source voltage. This parameter is only visible when you select Specify from a datasheet for the

\section*{N-Channel JFET}

Parameterization parameter. The default value is [ \(3 \mathrm{e}+0310\) ] uS.

\section*{Small-signal measurement point, [V_gs V_ds]}

A vector of the values of \(V_{\mathrm{GS}}\) and \(V_{\mathrm{DS}}\) at which \(g \_f s\) and g_os are measured. \(V_{\text {DS }}\) should be greater than zero. For depletion-mode devices, \(V_{\mathrm{GS}}\) is typically zero. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is [ \(0 \quad 15\) ] V.

\section*{Transconductance parameter}

The derivative of drain current with respect to gate voltage. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is \(1 \mathrm{e}-04 \mathrm{~A} / \mathrm{V}^{2}\).

\section*{Saturation current}

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is \(1 \mathrm{e}-14 \mathrm{~A}\).

\section*{Threshold voltage}

The gate-source voltage above which the transistor produces a nonzero drain current. For an enhancement device, Vt0 should be positive. For a depletion mode device, Vt0 should be negative. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is -2 V .

\section*{Channel-length modulation}

The channel-length modulation. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is \(01 / \mathrm{V}\).

\section*{Measurement temperature}

The temperature for which the datasheet parameters are quoted. The default value is 25 C .

\section*{N-Channel JFET}

\section*{Ohmic Resistance Tab}

\section*{Block Parameters: N -Channel JFET}

N -Channel JFET
This block represents an N -Channel JFET. The drain current Id for positive Vds (normal operation) is given by:
Id \(=0\) if \(\mathrm{Vgs}-\mathrm{V} t 0<0\) (off)
\(\mathrm{Id}=\mathrm{B}^{*} \mathrm{Vds}{ }^{*}\left[2^{*}(\mathrm{Vgs}-\mathrm{Vt0} 0)-\mathrm{Vds}\right]^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<\mathrm{Vds}<\mathrm{Vgs}-\mathrm{Vt0} 0\) (linear region)
Id \(=\mathrm{B}^{*}(\mathrm{Vgs}-\mathrm{Vt} 0)^{\wedge} 2^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<\mathrm{Vgs}-\mathrm{Vt0} 0<\mathrm{Vds}\) (saturated region)
where B is the Transconductance parameter, Vt0 is the Threshold voltage, L is the Channel-length modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.

Parameters
\begin{tabular}{|l|l|l|l|}
\hline Main & Ohmic Resistance & Junction Capacitance & Temperature Dependence \\
\hline Source ohmic resistance: & \(1 \mathrm{e}-4\) & & \\
\hline Drain ohmic resistance: & \(\boxed{0.01}\) & Ohm \\
& & & Ohm \\
\hline
\end{tabular}

\section*{Source ohmic resistance}

The transistor source resistance. The default value is \(1 \mathrm{e}-4 \Omega\). The value must be greater than or equal to 0 .

\section*{Drain ohmic resistance}

The transistor drain resistance. The default value is \(0.01 \Omega\). The value must be greater than or equal to 0 .

\section*{Junction Capacitance Tab}

Block Parameters: N-Channel JFET
N -Channel JFET
This block represents an N-Channel JFET. The drain current Id for positive Vds (normal operation) is given by:
Id \(=0\) if \(\mathrm{Vgs}-\mathrm{Vt} 0<0\) (off)
\(\mathrm{Id}=\mathrm{B}^{*} \mathrm{Vds} \mathrm{V}^{*}\left[2^{*}(\mathrm{Vgs}-\mathrm{Vt} 0)-\mathrm{Vds}\right]^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<\mathrm{Vds}<\mathrm{Vgs}-\mathrm{Vt} 0\) ] (linear region)
Id \(=\mathrm{B}^{*}(\mathrm{Vgs}-\mathrm{Vt} 0)^{\wedge} 2^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<\mathrm{Vgs}-\mathrm{Vt} 0<\mathrm{Vds}\) (saturated region)
where B is the Transconductance parameter, Vt0 is the Threshold voltage, L is the Channel-length modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.

Parameters
\begin{tabular}{l|l|l|l|}
\hline Main & Ohmic Resistance Junction Capacitance & Temperature Dependence \\
\hline
\end{tabular}
Parameterization:
Input capacitance, Ciss:
Reverse transfer capacitance, Crss:


\section*{Parameterization}

Select one of the following methods for block parameterization:
- Specify from a datasheet - Provide parameters that the block converts to junction capacitance values. This is the default method.
- Specify using equation parameters directly - Provide junction capacitance parameters directly.

\section*{Input capacitance, Ciss}

The gate-source capacitance with the drain shorted to the source. This parameter is only visible when you select Specify from a datasheet for the Model junction capacitance parameter. The default value is 4.5 pF .

\section*{Reverse transfer capacitance, Crss}

The drain-gate capacitance with the source connected to ground. This parameter is only visible when you select Specify from a datasheet for the Model junction capacitance parameter. The default value is 1.5 pF .

\section*{Gate-source junction capacitance}

The value of the capacitance placed between the gate and the source. This parameter is only visible when you select Specify using equation parameters directly for the Model junction capacitance parameter. The default value is 3 pF .

\section*{Gate-drain junction capacitance}

The value of the capacitance placed between the gate and the drain. This parameter is only visible when you select Specify using equation parameters directly for the Model junction capacitance parameter. The default value is 1.5 pF .

\section*{N-Channel JFET}

\section*{Temperature Dependence Tab}

\section*{Block Parameters: N-Channel JFET}

N -Channel JFET
This block represents an N -Channel JFET. The drain current Id for positive Vds (normal operation) is given by:
```

Id =0 if Vgs-Vt0 < 0 (off)
Id = B*Vds*[2* (Vgs - Vt0) - Vds]*}\mp@subsup{]}{}{*}(1+\mp@subsup{L}{}{*}|Vds|) if 0<Vds < Vgs - Vt0] (linear region)
Id = B*(Vgs - Vt0)^2* (1+L*|Vds) if 0 < Vgs - Vt0 < Vds (saturated region)

```
where B is the Transconductance parameter, Vt0 is the Threshold voltage, L is the Channel-length modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline Main & Ohmic Resistance & Junction Capacitance Temperature Dependence \\
\hline
\end{tabular}

Parameterization:
None - Simulate at parameter measurement temperature

\section*{Parameterization}

Select one of the following methods for temperature dependence parameterization:
- None Simulate at parameter measurement temperature - Temperature dependence is not modeled. This is the default method.
- Model temperature dependence - Model temperature-dependent effects. You also have to provide a set of additional parameters depending on the block parameterization method. If you parameterize the block from a datasheet, you have to provide values for \(I_{-}\)gss and \(I_{-} d s s\) at second measurement temperature. If you parameterize by directly specifying equation parameters, you have to provide the values for \(E G, X T I\), and the gate threshold voltage temperature coefficient, \(d V_{\mathrm{t} 0} / d T\). Regardless of the block parameterization method, you also have to provide values for \(B E X\) and for the simulation temperature, \(T_{\mathrm{s}}\).

Gate reverse current, I_gss, at second measurement temperature
The value of the gate reverse current, \(I \_g s s\), at the second measurement temperature. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. It must be quoted for the same working point (drain current and gate-source voltage) as the Drain-source on resistance, R_DS(on) parameter on the Main tab. The default value is -200 nA.

\section*{Saturated drain current, I_dss, at second measurement temperature}

The value of the saturated drain current, \(I_{-} d s s\), at the second measurement temperature, and when the \(I \_d s s\) measurement point is the same as defined by the \(\mathbf{I}\) _dss measurement point, [V_gs V_ds] parameter on the Main tab. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. The default value is 2.5 mA .

\section*{N-Channel JFET}

\section*{Second measurement temperature}

Second temperature \(T_{\mathrm{m} 2}\) at which Gate reverse current, I_gss, at second measurement temperature and Saturated drain current, I_dss, at second measurement temperature are measured. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. The default value is 125 C.

Energy gap, EG
Energy gap value. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter on the Main tab. The default value is 1.11 eV .

Saturation current temperature exponent, XTI
Saturation current temperature coefficient value. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter on the Main tab. The default value is 3 .

\section*{Gate threshold voltage temperature coefficient, \(\mathrm{dVt0} / \mathrm{dT}\) The rate of change of gate threshold voltage with temperature. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter on the Main tab. The default value is \(-6 \mathrm{mV} / \mathrm{K}\).}

\section*{Mobility temperature exponent, BEX}

Mobility temperature coefficient value. You can use the default value for most JFETs. See the "Basic Assumptions and Limitations" on page 1-290 section for additional considerations. The default value is -1.5 .

\section*{Device simulation temperature}

Temperature \(T_{\mathrm{s}}\) at which the device is simulated. The default value is 25 C .

Ports The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

D
Electrical conserving port associated with the transistor drain terminal.

S
Electrical conserving port associated with the transistor source terminal.

\title{
References
}
[1] H. Shichman and D. A. Hodges, Modeling and simulation of insulated-gate field-effect transistor switching circuits. IEEE J. Solid State Circuits, SC-3, 1968.
[2] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 2.

\section*{See Also}

Purpose

\section*{Library}

Description


Model N-Channel MOSFET using Shichman-Hodges equation
Semiconductor Devices
The N-Channel MOSFET block uses the Shichman and Hodges equations [1] for an insulated-gate field-effect transistor to represent an N-Channel MOSFET.
The drain-source current, \(I_{\mathrm{DS}}\), depends on the region of operation:
- In the off region \(\left(V_{\mathrm{GS}}<V_{\mathrm{th}}\right)\) the drain-source current is:
\[
I_{D S}=0
\]
- In the linear region \(\left(0<V_{\mathrm{DS}}<V_{\mathrm{GS}}-V_{\mathrm{th}}\right)\) the drain-source current is:
\[
I_{D S}=K\left(\left(V_{G S}-V_{t h}\right) V_{D S}-V_{D S}^{2} / 2\right)\left(1+\lambda\left|V_{D S}\right|\right)
\]
- In the saturated region \(\left(0<V_{\mathrm{GS}}-V_{\mathrm{th}}<V_{\mathrm{DS}}\right)\) the drain-source current is:
\[
I_{D S}=(K / 2)\left(V_{G S}-V_{t h}\right)^{2}\left(1+\lambda\left|V_{D S}\right|\right)
\]

In the preceding equations:
- \(K\) is the transistor gain.
- \(V_{\mathrm{DS}}\) is the positive drain-source voltage.
- \(V_{\mathrm{GS}}\) is the gate-source voltage.
- \(V_{\mathrm{th}}\) is the threshold voltage.
- \(\lambda\) is the channel modulation.

\section*{Charge Model}

The block models gate junction capacitance as a fixed gate-source capacitance \(C_{G S}\) and either a fixed or a nonlinear gate-drain capacitance \(C_{\text {GD }}\).

If you select Specify using equation parameters directly for the Parameterization parameter in the Junction Capacitance tab, you specify the Gate-drain junction capacitance and Gate-source junction capacitance parameters directly. Otherwise, the block derives them from the Input capacitance Ciss and Reverse transfer capacitance Crss parameter values. The two parameterizations are related as follows:
- \(C_{G D}=C r s s\)
- \(C_{\mathrm{GS}}=\) Ciss - Crss

If you select the Gate-drain charge function is nonlinear option for the Charge-voltage linearity parameter, then the gate-drain charge relationship is defined by the piecewise-linear function shown in the following figure.

\section*{N-Channel MOSFET}


For instructions on how to map a time response to device capacitance values, see the N-Channel IGBT block reference page. However, this mapping is only approximate because the Miller voltage typically varies more from the threshold voltage than in the case for the IGBT.

\section*{Modeling Temperature Dependence}

The default behavior is that dependence on temperature is not modeled, and the device is simulated at the temperature for which you provide
block parameters. You can optionally include modeling the dependence of the transistor static behavior on temperature during simulation. Temperature dependence of the junction capacitances is not modeled, this being a much smaller effect.
When including temperature dependence, the transistor defining equations remain the same. The gain, \(K\), and the threshold voltage, \(V_{\text {th }}\), become a function of temperature according to the following equations:
\[
\begin{aligned}
& K_{T s}=K_{T m 1}\left(\frac{T_{s}}{T_{m 1}}\right)^{B E X} \\
& V_{\text {ths }}=V_{\text {th1 }}+a\left(T_{\mathrm{s}}-T_{\mathrm{m} 1}\right)
\end{aligned}
\]
where:
- \(T_{\mathrm{m} 1}\) is the temperature at which the transistor parameters are specified, as defined by the Measurement temperature parameter value.
- \(T_{\mathrm{s}}\) is the simulation temperature.
- \(K_{\mathrm{Tm} 1}\) is the transistor gain at the measurement temperature.
- \(K_{\mathrm{Ts}}\) is the transistor gain at the simulation temperature. This is the transistor gain value used in the MOSFET equations when temperature dependence is modeled.
- \(V_{\text {th } 1}\) is the threshold voltage at the measurement temperature.
- \(V_{\text {ths }}\) is the threshold voltage at the simulation temperature. This is the threshold voltage value used in the MOSFET equations when temperature dependence is modeled.
- \(B E X\) is the mobility temperature exponent. A typical value of \(B E X\) is -1.5 .
- \(\alpha\) is the gate threshold voltage temperature coefficient, \(d V_{\mathrm{th}} / d T\).

For most MOSFETS, you can use the default value of -1.5 for \(B E X\). Some datasheets quote the value for \(a\), but most typically they provide the temperature dependence for drain-source on resistance, \(R_{D S}\) (on). Depending on the block parameterization method, you have two ways of specifying \(a\) :
- If you parameterize the block from a datasheet, you have to provide \(R_{D S}(o n)\) at a second measurement temperature. The block then calculates the value for \(\alpha\) based on this data.
- If you parameterize by specifying equation parameters, you have to provide the value for \(a\) directly.

If you have more data comprising drain current as a function of gate-source voltage for more than one temperature, then you can also use Simulink Design Optimization software to help tune the values for \(a\) and \(B E X\).

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.

Use the thermal port to simulate the effects of generated heat and device temperature. For more information on using thermal ports and on the Thermal port tab parameters, see "Simulating Thermal Effects in Semiconductors".
Basic
Assumptions
and
Limitations

When modeling temperature dependence, consider the following:
- The block does not account for temperature-dependent effects on the junction capacitances.
- When you specify \(R_{D S}(\) on \()\) at a second measurement temperature, it must be quoted for the same working point (that is, the same drain current and gate-source voltage) as for the other \(R_{D S}(o n)\) value.

\section*{N-Channel MOSFET}

Inconsistent values for \(R_{D S}(o n)\) at the higher temperature will result in unphysical values for \(a\) and unrepresentative simulation results. Typically \(R_{D S}(o n)\) increases by a factor of about 1.5 for a hundred degree increase in temperature.
- You may need to tune the values of \(B E X\) and threshold voltage, \(V_{\mathrm{th}}\), to replicate the \(V_{\mathrm{DS}}-V_{\mathrm{GS}}\) relationship (if available) for a given device. Increasing \(V_{\text {th }}\) moves the \(V_{\mathrm{DS}}-V_{\mathrm{GS}}\) plots to the right. The value of \(B E X\) affects whether the \(V_{\mathrm{DS}}-V_{\mathrm{GS}}\) curves for different temperatures cross each other, or not, for the ranges of \(V_{\mathrm{DS}}\) and \(V_{\mathrm{GS}}\) considered. Therefore, an inappropriate value can result in the different temperature curves appearing to be reordered. Quoting \(R_{D S}(o n)\) values for higher currents, preferably close to the current at which it will operate in your circuit, will reduce sensitivity to the precise value of \(B E X\).

\section*{Dialog Box and Parameters}

Main Tab


Alock Parameters: N-Channel MOSFET
N -Channel MOSFET
This block represents an N -channel MOSFET (or IGFET). The drain-source current Ids for positive Vds is given by:
Ids \(=0\) if \(\mathrm{Vgs}<\mathrm{V}\) th (off)
Ids \(=\mathrm{K}^{*}\left[(\mathrm{Vgs}-\mathrm{Vth})^{*} \mathrm{Vds}-\mathrm{Vds}{ }^{\wedge} 2 / 2\right]^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(\left.0<\mathrm{Vds}<\mathrm{Vgs}-\mathrm{Vth}\right]\) (linear region)
Ids \(=(\mathrm{K} / 2)^{*}(\mathrm{Vgs}-\mathrm{Vth})^{\wedge} 2^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<\mathrm{Vgs}-\mathrm{Vth}<\mathrm{Vds}\) (saturated region)
where K is a constant, V th is the Threshold voltage, L is the channel modulation, Vg is the gate-source voltage and Vds is the drain-source voltage.

Parameters
OK Cancel Help Apply

\section*{Parameterization}

Select one of the following methods for block parameterization:
- Specify from a datasheet - Provide the drain-source on resistance and the corresponding drain current and gate-source voltage. The block calculates the transistor gain for the Shichman and Hodges equations from this information. This is the default method.
- Specify using equation parameters directly - Provide the transistor gain.

\section*{Drain-source on resistance, R_DS(on)}

The ratio of the drain-source voltage to the drain current for specified values of drain current and gate-source voltage. \(R_{D S}\) (on) should have a positive value. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is \(0.025 \Omega\).

\section*{Drain current, Ids, for R_DS(on)}

The drain current the block uses to calculate the value of the drain-source resistance. \(I_{\text {DS }}\) should have a positive value. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 6 A .

\section*{Gate-source voltage, Vgs, for R_DS(on)}

The gate-source voltage the block uses to calculate the value of the drain-source resistance. \(V_{\mathrm{GS}}\) should have a positive value. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 10 V .

\section*{Gain K}

Positive constant gain coefficient for the Shichman and Hodges equations. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is \(5 \mathrm{~A} / \mathrm{V}^{2}\).

Gate-source threshold voltage Vth
Gate-source threshold voltage \(V_{\text {th }}\) in the Shichman and Hodges equations. For an enhancement device, \(V_{\text {th }}\) should be positive. For a depletion mode device, \(V_{\text {th }}\) should be negative. The default value is 1.7 V .

\section*{Channel modulation, \(L\)}

The channel-length modulation, usually denoted by the mathematical symbol \(\lambda\). When in the saturated region, it is the rate of change of drain current with drain-source voltage. The effect on drain current is typically small, and the effect is neglected if calculating transistor gain \(K\) from drain-source
on-resistance, \(R_{D S}(o n)\). A typical value is 0.02 , but the effect can be ignored in most circuit simulations. However, in some circuits a small nonzero value may help numerical convergence. The default value is \(01 / \mathrm{V}\).

\section*{Measurement temperature}

Temperature \(T_{\mathrm{m} 1}\) at which Drain-source on resistance, R_DS(on) is measured. This parameter is only visible when you select Model temperature dependence for the Parameterization parameter on the Temperature Dependence tab. The default value is 25 C .

\section*{Ohmic Resistance Tab}


\section*{Source ohmic resistance}

The transistor source resistance. The default value is \(1 \mathrm{e}-4 \Omega\). The value must be greater than or equal to 0 .

\section*{Drain ohmic resistance}

The transistor drain resistance. The default value is \(0.001 \Omega\). The value must be greater than or equal to 0 .

\section*{Junction Capacitance Tab}



\section*{Parameterization}

Select one of the following methods for capacitance parameterization:
- Specify from a datasheet - Provide parameters that the block converts to junction capacitance values. This is the default method.
- Specify using equation parameters directly - Provide junction capacitance parameters directly.

\section*{Input capacitance Ciss}

The gate-source capacitance with the drain shorted to the source. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 350 pF .

\section*{Reverse transfer capacitance Crss}

The drain-gate capacitance with the source connected to ground. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 80 pF .

\section*{Gate-source junction capacitance}

The value of the capacitance placed between the gate and the source. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 270 pF .

\section*{Gate-drain junction capacitance}

The value of the capacitance placed between the gate and the drain. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 80 pF .

\section*{Charge-voltage linearity}

Select whether gate-drain capacitance is fixed or nonlinear:
- Gate-drain capacitance is constant - The capacitance value is constant and defined according to the selected parameterization option, either directly or derived from a datasheet. This is the default method.
- Gate-drain charge function is nonlinear - The gate-drain charge relationship is defined according to the
piecewise-nonlinear function described in "Charge Model" on page 1-303. Two additional parameters appear to let you define the gate-drain charge function.

\section*{Gate-drain oxide capacitance}

The gate-drain capacitance when the device is on and the drain-gate voltage is small. This parameter is only visible when you select Gate-drain charge function is nonlinear for the Charge-voltage linearity parameter. The default value is 200 pF .

Drain-gate voltage at which oxide capacitance becomes active The drain-gate voltage at which the drain-gate capacitance switches between off-state ( \(C_{\mathrm{GD}}\) ) and on-state ( \(C_{\mathrm{ox}}\) ) capacitance values. This parameter is only visible when you select Gate-drain charge function is nonlinear for the Charge-voltage linearity parameter. The default value is -0.5 V .

\section*{N-Channel MOSFET}

\section*{Temperature Dependence Tab}

\section*{Block Parameters: N-Channel MOSFET}

\section*{N -Channel MOSFET}

This block represents an N -channel MOSFET (or IGFET). The drain-source current Ids for positive Vds is given by:
Ids \(=0\) if \(\mathrm{Vgs}<\mathrm{Vth}\) (off)
Ids \(=\mathrm{K}^{*}\left[(\mathrm{Vgs}-\mathrm{Vth})^{*} \mathrm{Vds}-\mathrm{Vds} \wedge 2 / 2\right]^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(\left.0<\mathrm{Vds}<\mathrm{Vgs}-\mathrm{Vth}\right]\) (linear region)
Ids \(=(\mathrm{K} / 2)^{*}(\mathrm{Vgs}-\mathrm{Vth})^{\wedge} 2^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<\mathrm{Vgs}-\mathrm{Vth}<\mathrm{Vds}\) (saturated region)
where K is a constant, V th is the Threshold voltage, L is the channel modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.

\section*{Parameters}
\begin{tabular}{|l|l|l|} 
Main & Ohmic Resistance & Junction Capacitance Temperature Dependence \\
\hline
\end{tabular}

Parameterization:
None - Simulate at parameter measurement temperature

\section*{Parameterization}

Select one of the following methods for temperature dependence parameterization:
- None Simulate at parameter measurement temperature - Temperature dependence is not modeled. This is the default method.
- Model temperature dependence - Model temperature-dependent effects. Provide a value for simulation temperature, \(T_{\mathrm{s}}\), a value for \(B E X\), and a value for the measurement temperature \(T_{\mathrm{m} 1}\) (using the Measurement temperature parameter on the Main tab). You also have to provide a value for \(a\) using one of two methods, depending on the value of the Parameterization parameter on the Main tab. If you parameterize the block from a datasheet, you have to provide \(R_{D S}(o n)\) at a second measurement temperature, and the block will calculate \(\alpha\) based on that. If you parameterize by specifying equation parameters, you have to provide the value for \(\alpha\) directly.

\section*{Drain-source on resistance, R_DS(on), at second measurement temperature}

The ratio of the drain-source voltage to the drain current for specified values of drain current and gate-source voltage at second measurement temperature. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. It must be quoted for the same working point (drain current and gate-source voltage) as the Drain-source on resistance, R_DS(on) parameter on the Main tab. The default value is \(0.037 \Omega\).

\section*{Second measurement temperature}

Second temperature \(T_{\mathrm{m} 2}\) at which Drain-source on resistance, R_DS(on), at second measurement temperature is measured. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. The default value is 125 C .

\section*{Gate threshold voltage temperature coefficient, dVth/dT}

The rate of change of gate threshold voltage with temperature. This parameter is only visible when you select Specify using
equation parameters directly for the Parameterization parameter on the Main tab. The default value is \(-6 \mathrm{mV} / \mathrm{K}\).

\section*{Mobility temperature exponent, BEX}

Mobility temperature coefficient value. You can use the default value for most MOSFETs. See the "Basic Assumptions and Limitations" on page 1-306 section for additional considerations. The default value is -1.5 .

\section*{Device simulation temperature}

Temperature \(T_{\mathrm{s}}\) at which the device is simulated. The default value is 25 C .

\section*{Ports The block has the following ports:}

G
Electrical conserving port associated with the transistor gate terminal.

D
Electrical conserving port associated with the transistor drain terminal.

S
Electrical conserving port associated with the transistor source terminal.

\section*{References \\ [1] H. Shichman and D. A. Hodges. "Modeling and simulation of insulated-gate field-effect transistor switching circuits." IEEE J. Solid State Circuits, SC-3, 1968.}

See Also P-Channel MOSFET

\section*{Purpose}

Model ideal negative supply rail

\section*{Library}

Sources
Description


The Negative Supply Rail block represents an ideal negative supply rail. Use this block instead of the Simscape DC Voltage Source block to define the output voltage relative to the Simscape Electrical Reference block that must appear in each model.

Note Do not attach more than one Negative Supply Rail block to any connected line.

Dialog
Box and Parameters
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{戒 Block Parameters: Negative Supply Rail} & - \\
\hline \multicolumn{7}{|l|}{Negative Supply Rail} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
This block represents an ideal negative supply rail. It can be used in place of the Foundation Library DC Voltage Source. The output voltage is defined relative to the Electrical Reference block. Use the Constant voltage parameter to specify the output voltage value. \\
Do not attach more than one Negative Supply Rail block to any connected line.
\end{tabular}} \\
\hline \multicolumn{7}{|l|}{Parameters} \\
\hline \multirow[t]{2}{*}{Constant voltage:} & -1 & & & v & & - \\
\hline & & OK & Cancel & Help & Appl & \\
\hline
\end{tabular}

\section*{Constant voltage}

The voltage at the output port relative to the Electrical Reference block ground port. The default value is -1 V .

\section*{Negative Supply Rail}

\section*{Ports}

> The block has the following ports:

Negative electrical voltage.
See Also Simscape DC Voltage Source, Positive Supply Rail

\section*{Purpose}

Model inductor with nonideal core

\section*{Library}

Description
Passive Devices

The Nonlinear Inductor block represents an inductor with a nonideal core. A core may be nonideal due to its magnetic properties and dimensions. The block provides the following parameterization options:
- Single inductance (linear)
- Single saturation point
- Magnetic flux versus current characteristic
- Magnetic flux density versus magnetic field strength characteristic

\section*{Single Inductance (Linear)}

The relationships between voltage, current and flux are defined by the following equations:
\[
\begin{aligned}
& i=i_{L}+v G_{p} \\
& v=N_{w} \frac{d \Phi}{d t} \\
& \Phi=\frac{L}{N_{w}} i_{L}
\end{aligned}
\]
where:
- \(v\) is the terminal voltage.
- \(i\) is the terminal current.
- \(i_{\mathrm{L}}\) is the current through inductor.
- \(G_{\mathrm{p}}\) is the parasitic parallel conductance.
- \(N_{\mathrm{w}}\) is the number of winding turns.

\section*{Nonlinear Inductor}
- \(\Phi\) is the magnetic flux.
- \(L\) is the unsaturated inductance.

\section*{Single Saturation Point}

The relationships between voltage, current and flux are defined by the following equations:
\[
\begin{aligned}
& i=i_{L}+v G_{p} \\
& v=N_{w} \frac{d \Phi}{d t} \\
& \Phi=\frac{L}{N_{w}} i_{L} \text { (for unsaturated) } \\
& \Phi=\frac{L_{\text {sat }}}{N_{w}} i_{L} \pm \Phi_{\text {offset }} \text { (for saturated) }
\end{aligned}
\]
where:
- \(v\) is the terminal voltage.
- \(i\) is the terminal current.
- \(i_{\mathrm{L}}\) is the current through inductor.
- \(G_{\mathrm{p}}\) is the parasitic parallel conductance.
- \(N_{\mathrm{w}}\) is the number of winding turns.
- \(\Phi\) is the magnetic flux.
- \(\Phi_{\text {offset }}\) is the magnetic flux saturation offset.
- \(L\) is the unsaturated inductance.
- \(L_{\text {sat }}\) is the saturated inductance.

\title{
Nonlinear Inductor
}

\section*{Magnetic Flux Versus Current Characteristic}

The relationships between voltage, current and flux are defined by the following equations:
\[
\begin{aligned}
& i=i_{L}+v G_{p} \\
& v=N_{w} \frac{d \Phi}{d t} \\
& \Phi=f\left(i_{L}\right)
\end{aligned}
\]
where:
- \(v\) is the terminal voltage.
- \(i\) is the terminal current.
- \(i_{\mathrm{L}}\) is the current through inductor.
- \(G_{\mathrm{p}}\) is the parasitic parallel conductance.
- \(N_{\mathrm{w}}\) is the number of winding turns.
- \(\Phi\) is the magnetic flux.

Magnetic flux is determined by one-dimensional table lookup, based on the vector of current values and the vector of corresponding magnetic flux values that you provide. You can construct these vectors using either negative and positive data, or positive data only. If using positive data only, the vector must start at 0 , and the negative data will be automatically calculated by rotation about ( 0,0 ).

\section*{Magnetic Flux Density Versus Magnetic Field Strength Characteristic}

The relationships between voltage, current and flux are defined by the following equations:

\section*{Nonlinear Inductor}
\[
\begin{aligned}
& i=i_{L}+v G_{p} \\
& v=N_{w} \frac{d \Phi}{d t} \\
& \Phi=B \cdot A_{e} \\
& B=f(H) \\
& H=\frac{N_{w}}{l_{e}} i_{L}
\end{aligned}
\]
where:
- \(v\) is the terminal voltage.
- \(i\) is the terminal current.
- \(i_{\mathrm{L}}\) is the current through inductor.
- \(G_{\mathrm{p}}\) is the parasitic parallel conductance.
- \(N_{\mathrm{w}}\) is the number of winding turns.
- \(\Phi\) is the magnetic flux.
- \(H\) is the magnetic field strength.
- \(B\) is the magnetic flux density.
- \(l_{\mathrm{e}}\) is the effective core length.
- \(A_{\mathrm{e}}\) is the effective core cross-sectional area.

Magnetic flux density is determined by one-dimensional table lookup, based on the vector of magnetic field strength values and the vector of corresponding magnetic flux density values that you provide. You can construct these vectors using either negative and positive data, or positive data only. If using positive data only, the vector must start at

0 , and the negative data will be automatically calculated by rotation about \((0,0)\).

\section*{Nonlinear Inductor}

\section*{Dialog Box and Parameters}
- "Main Tab" on page 1-324
- "Initial Conditions Tab" on page 1-328

\section*{Main Tab}

\section*{Block Parameters: Nonlinear Inductor}

\section*{Nonlinear Inductor}

Represents a nonlinear inductor. The inductor can be modeled with varying levels of nonlinearity. These range fr a linear representation to specification of the magnetic flux density ( \(B\) ) versus magnetic field strength ( \(H\) ) characteristic.

The Initial current or Initial magnetic flux parameter is used to set the initial magnetic flux of the inductor. Note th this value is not used if the solver configuration is set to Start simulation from steady state.

The Parasitic parallel conductance represents small parasitic effects. A small parallel conductance may be requir for the simulation of some circuit topologies.

\section*{Parameters}
Main Initial Conditions

Parameterized by:
Single saturation point
Number of turns:
Unsaturated inductanc
Saturated inductance:
Saturation magnetic flux:
Parasitic parallel conductance:

10

\section*{\(2 \mathrm{e}-4\)}
\(1 \mathrm{e}-4\)
\(1.3 \mathrm{e}-5\)
\(1 \mathrm{e}-9\)
\begin{tabular}{ll}
\hline H & \\
\hline H & \\
\hline Wb & \\
\hline 1/Ohm \\
\hline
\end{tabular}

\section*{Parameterized by}

Select one of the following methods for block parameterization:
- Single inductance (linear) - Provide the values for number of turns, unsaturated inductance, and parasitic parallel conductance.
- Single saturation point - Provide the values for number of turns, unsaturated and saturated inductances, saturation magnetic flux, and parasitic parallel conductance. This is the default option.
- Magnetic flux versus current characteristic - In addition to the number of turns and the parasitic parallel conductance value, provide the current vector and the magnetic flux vector, to populate the magnetic flux versus current lookup table.
- Magnetic flux density versus magnetic field strength characteristic - In addition to the number of turns and the parasitic parallel conductance value, provide the values for effective core length and cross-sectional area, as well as the magnetic field strength vector and the magnetic flux density vector, to populate the magnetic flux density versus magnetic field strength lookup table.

\section*{Number of turns}

The total number of turns of wire wound around the inductor core. The default value is 10 .

\section*{Unsaturated inductance}

The value of inductance used when the inductor is operating in its linear region. This parameter is only visible when you select Single inductance (linear) or Single saturation point for the Parameterized by parameter. The default value is \(2 \mathrm{e}-4 \mathrm{H}\).

\section*{Saturated inductance}

The value of inductance used when the inductor is operating beyond its saturation point. This parameter is only visible when

\section*{Nonlinear Inductor}
you select Single saturation point for the Parameterized by parameter. The default value is \(1 \mathrm{e}-4 \mathrm{H}\).

\section*{Saturation magnetic flux}

The value of magnetic flux at which the inductor saturates. This parameter is only visible when you select Single saturation point for the Parameterized by parameter. The default value is \(1.3 e-5 \mathrm{~Wb}\).

\section*{Current, i}

The current data used to populate the magnetic flux versus current lookup table. This parameter is only visible when you select Magnetic flux versus current characteristic for the Parameterized by parameter. The default value is [ 00.64 1.281 .922 .563 .20 ] A.

\section*{Magnetic flux vector, phi}

The magnetic flux data used to populate the magnetic flux versus current lookup table. This parameter is only visible when you select Magnetic flux versus current characteristic for the Parameterized by parameter. The default value is [0 1.29 2.002 .272 .362 .39 ].*1e-5 Wb.

\section*{Magnetic field strength vector, \(H\)}

The magnetic field strength data used to populate the magnetic flux density versus magnetic field strength lookup table. This parameter is only visible when you select Magnetic flux density versus magnetic field strength characteristic for the Parameterized by parameter. The default value is [ 0 2004006008001000 ] A/m.

\section*{Magnetic flux density vector, \(B\)}

The magnetic flux density data used to populate the magnetic flux density versus magnetic field strength lookup table. This parameter is only visible when you select Magnetic flux density versus magnetic field strength characteristic for the Parameterized by parameter. The default value is [ 0 0.811 .251 .421 .481 .49 ] T.

\section*{Effective length}

The effective core length, that is, the average distance of the magnetic path. This parameter is only visible when you select Magnetic flux density versus magnetic field strength characteristic for the Parameterized by parameter. The default value is 0.032 m .

\section*{Effective cross-sectional area}

The effective core cross-sectional area, that is, the average area of the magnetic path. This parameter is only visible when you select Magnetic flux density versus magnetic field strength characteristic for the Parameterized by parameter. The default value is \(1.6 e-5 \mathrm{~m}^{\wedge} 2\).

\section*{Parasitic parallel conductance}

Use this parameter to represent small parasitic effects. A small parallel conductance may be required for the simulation of some circuit topologies. The default value is \(1 \mathrm{e}-91 / \Omega\).

\section*{Interpolation option}

The lookup table interpolation option. This parameter is only visible when you select Magnetic flux versus current characteristic or Magnetic flux density versus magnetic field strength characteristic for the Parameterized by parameter. Select one of the following interpolation methods:
- Linear - Uses a linear interpolation function.
- Cubic - Uses the Piecewise Cubic Hermite Interpolation Polinomial (PCHIP).

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Nonlinear Inductor}

\section*{Initial Conditions Tab}

Block Parameters: Nonlinear Inductor

\section*{Nonlinear Inductor}

Represents a nonlinear inductor. The inductor can be modeled with varying levels of nonlinearity. These range fr a linear representation to specification of the magnetic flux density ( \(B\) ) versus magnetic field strength ( \(H\) ) characteristic.

The Initial current or Initial magnetic flux parameter is used to set the initial magnetic flux of the inductor. Note th this value is not used if the solver configuration is set to Start simulation from steady state.

The Parasitic parallel conductance represents small parasitic effects. A small parallel conductance may be requir for the simulation of some circuit topologies.

\section*{Parameters}

Main Initial Conditions

Specify initial state by:

\section*{Current}

Initial current:

\section*{0}

\section*{A}

\section*{Specify initial state by}

Select the appropriate initial state specification option:
- Current - Specify the initial state of the inductor by the initial current through the inductor ( \(i_{\mathrm{L}}\) ). This is the default option.
- Magnetic flux - Specify the initial state of the inductor by the magnetic flux.

\section*{Initial current}

The initial current value used to calculate the value of magnetic flux at time zero. This is the current passing through the inductor. Component current consists of current passing through the inductor and current passing through the parasitic parallel conductance. This parameter is only visible when you select Current for the Specify initial state by parameter. The default value is 0 A .

\section*{Initial magnetic flux}

The value of magnetic flux at time zero. This parameter is only visible when you select Magnetic flux for the Specify initial state by parameter. The default is 0 Wb .

\section*{Examples For comparison of nonlinear inductor behavior with different parameterization options, see the Nonlinear Inductor Characteristics example.}

\section*{Ports \\ The block has the following ports:}

\footnotetext{
\(+\)
Positive electrical port.

Negative electrical port.
}

\author{
See Also Simscape Inductor
}

\section*{Nonlinear Transformer}

Purpose Model transformer with nonideal core
Library
Passive Devices
Description The Nonlinear Transformer block represents a transformer with a
 nonideal core. A core may be nonideal due to its magnetic properties and dimensions. The equivalent circuit topology depends upon which of the two winding leakage parameterization options you select:
- Combined primary and secondary values

- Separate primary and secondary values

where:
- Req is the combined leakage resistance.
- Leq is the combined leakage inductance.
- R1 is the primary leakage resistance.
- L1 is the primary leakage inductance.
- \(R 2\) is the secondary leakage resistance.
- L2 is the secondary leakage inductance.
- \(R m\) is the magnetization resistance.
- \(L m\) is the magnetization inductance.

The block provides the following parameterization options for the nonlinear magnetization inductance:
- Single inductance (linear)
- Single saturation point
- Magnetic flux versus current characteristic

\section*{Nonlinear Transformer}
- Magnetic flux density versus magnetic field strength characteristic

For more information, see the Nonlinear Inductor block reference page.

\section*{Dialog \\ Box and Parameters}
- "Main Tab" on page 1-333
- "Magnetization Tab" on page 1-336
- "Initial Conditions Tab" on page 1-340
- "Parasitics Tab" on page 1-343

\section*{Nonlinear Transformer}

\section*{Main Tab}

\section*{Block Parameters: Nonlinear Transformer}

\section*{Nonlinear Transformer}

Represents a nonlinear transformer. The transformer can be modeled with varying levels of nonlinearity. The range from a linear representation to specification of the magnetic flux density (B) versus magnetic field stre (H) characteristic.

The parameters on the Initial Conditions tab are used to set the initial current or flux for each of the inductor Note that these values are not used if the solver configuration is set to Start simulation from steady state.

The parallel conductances on the Parasitics tab represent small parasitic effects. Small parallel conductance: be required for the simulation of some circuit topologies.

Parameters
\begin{tabular}{|c|l|l|l|}
\hline Main & Magnetization & Initial Conditions & Parasitics \\
\hline
\end{tabular}

Primary number of turns:
 100

Secondary number of turns: 200
Winding parameterized by: Combined primary and secondary values
Combined leakage resistance: 0.01
0.01 Ohm

Combined leakage inductance:
\(1 \mathrm{e}-4\)

\section*{H}

\section*{Nonlinear Transformer}

\section*{Primary number of turns}

The number of turns of wire on the primary winding of the transformer. The default value is 100 .

\section*{Secondary number of turns}

The number of turns of wire on the secondary winding of the transformer. The default value is 200.

\section*{Winding parameterized by}

Select one of the following methods for the winding leakage parameterization:
- Combined primary and secondary values - Use the lumped resistance and inductance values representing the combined leakage in the primary and secondary windings. This is the default option.
- Separate primary and secondary values - Use separate resistances and inductances to represent leakages in the primary and secondary windings.

\section*{Combined leakage resistance}

The lumped equivalent resistance \(R e q\), which represents the combined power loss of the primary and secondary windings. This parameter is only visible when you select Combined primary and secondary values for the Winding parameterized by parameter. The default value is \(0.01 \Omega\).

\section*{Combined leakage inductance}

The lumped equivalent inductance Leq, which represents the combined magnetic flux loss of the primary and secondary windings. This parameter is only visible when you select Combined primary and secondary values for the Winding parameterized by parameter. The default value is \(1 \mathrm{e}-4 \mathrm{H}\).

\section*{Primary leakage resistance}

The resistance R1, which represents the power loss of the primary winding. This parameter is only visible when you select Separate primary and secondary values for the Winding parameterized by parameter. The default value is \(0.01 \Omega\).

\section*{Primary leakage inductance}

The inductance \(L 1\), which represents the magnetic flux loss of the primary winding. This parameter is only visible when you select Separate primary and secondary values for the Winding parameterized by parameter. The default value is \(1 \mathrm{e}-4 \mathrm{H}\).

\section*{Secondary leakage resistance}

The resistance \(R 2\), which represents the power loss of the secondary winding. This parameter is only visible when you select Separate primary and secondary values for the Winding parameterized by parameter. The default value is \(0.01 \Omega\).

\section*{Secondary leakage inductance}

The inductance \(L 2\), which represents the magnetic flux loss of the secondary winding. This parameter is only visible when you select Separate primary and secondary values for the Winding parameterized by parameter. The default value is \(1 \mathrm{e}-4 \mathrm{H}\).

\section*{Nonlinear Transformer}

\section*{Magnetization Tab}

Block Parameters: Nonlinear Transformer

\section*{Nonlinear Transformer}

Represents a nonlinear transformer. The transformer can be modeled with varying levels of nonlinearity. These range from a linear representation to specification of the magnetic flux density (B) versus magnetic field strength \((\mathrm{H})\) characteristic.

The parameters on the Initial Conditions tab are used to set the initial current or flux for each of the inductors. Note that these values are not used if the solver configuration is set to Start simulation from steady state.

The parallel conductances on the Parasitics tab represent small parasitic effects. Small parallel conductances ma be required for the simulation of some circuit topologies.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main & Magnetization & Initial Conditions & Parasitics & & \\
\hline \multicolumn{2}{|l|}{Magnetization resistance:} & \multicolumn{2}{|l|}{100} & Ohm & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Magnetization inductance parameterized by:} & \multicolumn{2}{|r|}{Single saturation point} & & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Unsaturated inductance:} & \multicolumn{2}{|l|}{0.04} & H & * \\
\hline \multicolumn{2}{|l|}{Saturated inductance:} & \multicolumn{2}{|l|}{0.01} & H & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Saturation magnetic flux} & \multicolumn{2}{|l|}{\(1.6 \mathrm{e}-4\)} & Wb & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Nonlinear Transformer}

\section*{Magnetization resistance}

The resistance \(R m\), which represents the magnetic losses in the transformer core. The default value is \(100 \Omega\).

\section*{Magnetization inductance parameterized by}

Select one of the following methods for the nonlinear magnetization inductance parameterization:
- Single inductance (linear) - Provide the unsaturated inductance value.
- Single saturation point - Provide the values for the unsaturated and saturated inductances, as well as saturation magnetic flux. This is the default option.
- Magnetic flux versus current characteristic - Provide the current vector and the magnetic flux vector, to populate the magnetic flux versus current lookup table.
- Magnetic flux density versus magnetic field strength characteristic - Provide the values for effective core length and cross-sectional area, as well as the magnetic field strength vector and the magnetic flux density vector, to populate the magnetic flux density versus magnetic field strength lookup table.

\section*{Unsaturated inductance}

The value of inductance used when the magnetization inductance \(L m\) is operating in its linear region. This parameter is only visible when you select Single inductance (linear) or Single saturation point for the Magnetization inductance parameterized by parameter. The default value is 0.04 H .

\section*{Saturated inductance}

The value of inductance used when the magnetization inductance \(L m\) is operating beyond its saturation point. This parameter is only visible when you select Single saturation point for the Magnetization inductance parameterized by parameter. The default value is 0.01 H .

\section*{Nonlinear Transformer}

\section*{Saturation magnetic flux}

The value of magnetic flux at which the magnetization inductance \(L m\) saturates. This parameter is only visible when you select Single saturation point for the Magnetization inductance parameterized by parameter. The default value is \(1.6 \mathrm{e}-4 \mathrm{~Wb}\).

\section*{Current, i}

The current data used to populate the magnetic flux versus current lookup table. This parameter is only visible when you select Magnetic flux versus current characteristic for the Magnetization inductance parameterized by parameter. The default value is [ \(\left.\begin{array}{llllll}0 & 0.4 & 0.8 & 1.2 & 1.6 & 2.0\end{array}\right]\) A.

\section*{Magnetic flux vector, phi}

The magnetic flux data used to populate the magnetic flux versus current lookup table. This parameter is only visible when you select Magnetic flux versus current characteristic for the Magnetization inductance parameterized by parameter. The default value is \(\left[\begin{array}{llllll}0 & 0 & 0.161 & 0.25 & 0.284 & 0.2950 .299\end{array}\right] . * 1 e-3\) Wb.

Magnetic field strength vector, \(H\)
The magnetic field strength data used to populate the magnetic flux density versus magnetic field strength lookup table. This parameter is only visible when you select Magnetic flux density versus magnetic field strength characteristic for the Magnetization inductance parameterized by parameter. The default value is [ 02004006008001000 ] A/m.

Magnetic flux density vector, \(B\)
The magnetic flux density data used to populate the magnetic flux density versus magnetic field strength lookup table. This parameter is only visible when you select Magnetic flux density versus magnetic field strength characteristic for the Magnetization inductance parameterized by parameter. The default value is \(\left[\begin{array}{lllllllllllllll}0 & 0.81 & 1.25 & 1.42 & 1.48 & 1.49\end{array}\right.\) ] T.

\section*{Effective length}

The effective core length, that is, the average distance of the magnetic path around the transformer core. This parameter is only visible when you select Magnetic flux density versus magnetic field strength characteristic for the Magnetization inductance parameterized by parameter. The default value is 0.2 m .

\section*{Effective cross-sectional area}

The effective core cross-sectional area, that is, the average area of the magnetic path around the transformer core. This parameter is only visible when you select Magnetic flux density versus magnetic field strength characteristic for the Magnetization inductance parameterized by parameter. The default value is \(2 \mathrm{e}-4 \mathrm{~m}^{\wedge} 2\).

\section*{Interpolation option}

The lookup table interpolation option. This parameter is only visible when you select Magnetic flux versus current characteristic or Magnetic flux density versus magnetic field strength characteristic for the Magnetization inductance parameterized by parameter. Select one of the following interpolation methods:
- Linear - Uses a linear interpolation function.
- Cubic - Uses the Piecewise Cubic Hermite Interpolation Polinomial (PCHIP).

For more information on interpolation algorithms, see the PS Lookup Table (1D) block reference page.

\section*{Nonlinear Transformer}

\section*{Initial Conditions Tab}

\section*{Block Parameters: Nonlinear Transformer}

\section*{Nonlinear Transformer}

Represents a nonlinear transformer. The transformer can be modeled with varying levels of nonlinearity. These range from a linear representation to specification of the magnetic flux density (B) versus magnetic field strength (H) characteristic.

The parameters on the Initial Conditions tab are used to set the initial current or flux for each of the inductors. Note that these values are not used if the solver configuration is set to Start simulation from steady state.

The parallel conductances on the Parasitics tab represent small parasitic effects. Small parallel conductances me be required for the simulation of some circuit topologies.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Main & Magnetization & Initial Conditions & Parasitics \\
\hline
\end{tabular}

Combined leakage inductance initial current:

Specify magnetization inductance initial state by:

Magnetization inductance initial current:

0

Current

0

A

A

\section*{Nonlinear Transformer}

\section*{Combined leakage inductance initial current}

The value of current through the combined leakage inductance Leq at time zero. This parameter is only visible when you select Combined primary and secondary values for the Winding parameterized by parameter on the Main tab. The default value is 0 A .

\section*{Primary leakage inductance initial current}

The value of current through the primary leakage inductance \(L 1\) at time zero. This parameter is only visible when you select Separate primary and secondary values for the Winding parameterized by parameter on the Main tab. The default value is 0 A .

\section*{Secondary leakage inductance initial current}

The value of current through the secondary leakage inductance \(L 2\) at time zero. This parameter is only visible when you select Separate primary and secondary values for the Winding parameterized by parameter on the Main tab. The default value is 0 A .

Specify magnetization inductance initial state by Select the appropriate initial state specification option:
- Current - Specify the initial state of the magnetization inductance \(L m\) by the initial current. This is the default option.
- Magnetic flux - Specify the initial state of the magnetization inductance \(L m\) by the magnetic flux.

\section*{Magnetization inductance initial current}

The initial current value used to calculate the value of magnetic flux within the magnetization inductance \(L m\) at time zero. This is the current passing through the magnetization inductance Lm. Total magnetization current consists of current passing through the magnetization resistance \(R m\) and current passing through the magnetization inductance \(L m\). This parameter is only visible when you select Current for the Specify magnetization inductance initial state by parameter. The default value is 0 A .

\section*{Nonlinear Transformer}

\section*{Magnetization inductance initial magnetic flux}

The value of the magnetic flux in the magnetization inductance \(L m\) at time zero. This parameter is only visible when you select Magnetic flux for the Specify magnetization inductance initial state by parameter. The default is 0 Wb .

\section*{Nonlinear Transformer}

\section*{Parasitics Tab}

\section*{Block Parameters: Nonlinear Transformer}

\section*{Nonlinear Transformer}

Represents a nonlinear transformer. The transformer can be modeled with varying levels of nonlinearity. The range from a linear representation to specification of the magnetic flux density (B) versus magnetic field stre (H) characteristic.

The parameters on the Initial Conditions tab are used to set the initial current or flux for each of the inductor Note that these values are not used if the solver configuration is set to Start simulation from steady state.

The parallel conductances on the Parasitics tab represent small parasitic effects. Small parallel conductance: be required for the simulation of some circuit topologies.

Parameters
\begin{tabular}{|l|l|l|l|l|}
\hline Main & Magnetization & Initial Conditions & Parasitics & \\
\hline \begin{tabular}{l} 
Combined leakage inductance \\
parasitic parallel conductance:
\end{tabular} \(1 \mathrm{e}-9\) & & 1/Ohm \\
\hline
\end{tabular}

\section*{Nonlinear Transformer}

> Combined leakage inductance parasitic parallel conductance Use this parameter to represent small parasitic effects in parallel to the combined leakage inductance Leq. A small parallel conductance may be required for the simulation of some circuit topologies. This parameter is only visible when you select Combined primary and secondary values for the Winding parameterized by parameter on the Main tab. The default value is \(1 e-91 / \Omega\).

Primary leakage inductance parasitic parallel conductance Use this parameter to represent small parasitic effects in parallel to the primary leakage inductance L1. A small parallel conductance may be required for the simulation of some circuit topologies. This parameter is only visible when you select Separate primary and secondary values for the Winding parameterized by parameter on the Main tab. The default value is \(1 \mathrm{e}-91 / \Omega\).

\section*{Secondary leakage inductance parasitic parallel conductance} Use this parameter to represent small parasitic effects in parallel to the secondary leakage inductance \(L 2\). A small parallel conductance may be required for the simulation of some circuit topologies. This parameter is only visible when you select Separate primary and secondary values for the Winding parameterized by parameter on the Main tab. The default value is \(1 \mathrm{e}-91 / \Omega\).
\begin{tabular}{ll} 
Examples & \begin{tabular}{l} 
For comparison of nonlinear transformer behavior with different \\
parameterization options, see the Nonlinear Transformer \\
Characteristics example.
\end{tabular} \\
Ports & \begin{tabular}{l} 
The block has four electrical conserving ports. Polarity is indicated \\
by the + and - signs.
\end{tabular}
\end{tabular}

See Also Simscape Ideal Transformer, Nonlinear Inductor

\section*{Purpose}

Model NPN bipolar transistor using enhanced Ebers-Moll equations

\section*{Library}

Description
Semiconductor Devices
The NPN Bipolar Transistor block uses a variant of the

Ebers-Moll equations to represent an NPN bipolar transistor. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. The NPN Bipolar Transistor block provides the following enhancements to that model:
- Early voltage effect
- Optional base, collector, and emitter resistances.
- Optional fixed base-emitter and base-collector capacitances.

The collector and base currents are:
\[
\begin{aligned}
& I_{C}=I S\left[\left(e^{q V_{B E} /\left(k T_{m 1}\right)}-e^{q V_{B C} /\left(k T_{m 1}\right)}\right)\left(1-\frac{V_{B C}}{V_{A}}\right)-\frac{1}{\beta_{R}}\left(e^{q V_{B C} /\left(k T_{m 1}\right)}-1\right)\right] \\
& I_{B}=I S\left[\frac{1}{\beta_{F}}\left(e^{q V_{B E} /\left(k T_{m 1}\right)}-1\right)+\frac{1}{\beta_{R}}\left(e^{q V_{B C} /\left(k T_{m 1}\right)}-1\right)\right]
\end{aligned}
\]

Where:
- \(I_{B}\) and \(I_{C}\) are base and collector currents, defined as positive into the device.
- IS is the saturation current.
- \(V_{B E}\) is the base-emitter voltage and \(V_{B C}\) is the base-collector voltage.
- \(\beta_{\mathrm{F}}\) is the ideal maximum forward current gain BF
- \(\beta_{\mathrm{R}}\) is the ideal maximum reverse current gain BR
- \(V_{A}\) is the forward Early voltage VAF
- \(q\) is the elementary charge on an electron (1.602176e-19 Coulombs).

\section*{NPN Bipolar Transistor}
- \(k\) is the Boltzmann constant ( \(1.3806503 \mathrm{e}-23 \mathrm{~J} / \mathrm{K}\) ).
- \(T_{\mathrm{m} 1}\) is the transistor temperature, as defined by the Measurement temperature parameter value.

You can specify the transistor behavior using datasheet parameters that the block uses to calculate the parameters for these equations, or you can specify the equation parameters directly.

If \(q V_{\mathrm{BC}} /\left(k T_{\mathrm{m} 1}\right)>40\) or \(q V_{\mathrm{BE}} /\left(k T_{\mathrm{m} 1}\right)>40\), the corresponding exponential terms in the equations are replaced with \(\left(q V_{\mathrm{BC}} /\left(k T_{\mathrm{m} 1}\right)-39\right) e^{40}\) and \(\left(q V_{\mathrm{BE}} /\left(k T_{\mathrm{m} 1}\right)-39\right) e^{40}\), respectively. This helps prevent numerical issues associated with the steep gradient of the exponential function \(e^{x}\) at large values of \(x\). Similarly, if \(q V_{\mathrm{BC}} /\left(k T_{\mathrm{m} 1}\right)<-39\) or \(q V_{\mathrm{BE}} /\left(k T_{\mathrm{m} 1}\right)<-39\) then the corresponding exponential terms in the equations are replaced with \(\left(q V_{\mathrm{BC}} /\left(k T_{\mathrm{m} 1}\right)+40\right) e^{-39}\) and \(\left(q V_{\mathrm{BE}} /\left(k T_{\mathrm{m} 1}\right)+40\right) e^{-39}\), respectively.

Optionally, you can specify parasitic fixed capacitances across the base-emitter and base-collector junctions. You also have the option to specify base, collector, and emitter connection resistances.

\section*{Modeling Temperature Dependence}

The default behavior is that dependence on temperature is not modeled, and the device is simulated at the temperature for which you provide block parameters. You can optionally include modeling the dependence of the transistor static behavior on temperature during simulation. Temperature dependence of the junction capacitances is not modeled, this being a much smaller effect.

When including temperature dependence, the transistor defining equations remain the same. The measurement temperature value, \(T_{\mathrm{m} 1}\), is replaced with the simulation temperature, \(T_{\mathrm{s}}\). The saturation current, \(I S\), and the forward and reverse gains ( \(\beta_{F}\) and \(\beta_{R}\) ) become a function of temperature according to the following equations:
\[
I S_{T s}=I S_{T m 1} \cdot\left(T_{s} / T_{m 1}\right)^{X T I} \cdot \exp \left(-\frac{E G}{k T_{s}}\left(1-T_{s} / T_{m 1}\right)\right)
\]
\[
\begin{aligned}
& \beta_{F s}=\beta_{F m 1}\left(\frac{T_{s}}{T_{m 1}}\right)^{X T B} \\
& \beta_{R s}=\beta_{R m 1}\left(\frac{T_{s}}{T_{m 1}}\right)^{X T B}
\end{aligned}
\]
where:
- \(T_{\mathrm{m} 1}\) is the temperature at which the transistor parameters are specified, as defined by the Measurement temperature parameter value.
- \(T_{\mathrm{s}}\) is the simulation temperature.
- \(I S_{\mathrm{Tm} 1}\) is the saturation current at the measurement temperature.
- \(I S_{\mathrm{Ts}}\) is the saturation current at the simulation temperature. This is the saturation current value used in the bipolar transistor equations when temperature dependence is modeled.
- \(\beta_{\mathrm{Fm} 1}\) and \(\beta_{\mathrm{Rm} 1}\) are the forward and reverse gains at the measurement temperature.
- \(\beta_{\mathrm{Fs}}\) and \(\beta_{\mathrm{Rs}}\) are the forward and reverse gains at the simulation temperature. These are the values used in the bipolar transistor equations when temperature dependence is modeled.
- \(E G\) is the energy gap for the semiconductor type measured in Joules. The value for silicon is usually taken to be 1.11 eV , where 1 eV is \(1.602 \mathrm{e}-19\) Joules.
- XTI is the saturation current temperature exponent.
- XTB is the forward and reverse gain temperature coefficient.
- \(k\) is the Boltzmann constant (1.3806503e-23 J/K).

Appropriate values for \(X T I\) and \(E G\) depend on the type of transistor and the semiconductor material used. In practice, the values of XTI, \(E G\), and XTB need tuning to model the exact behavior of a particular

\section*{NPN Bipolar Transistor}
transistor. Some manufacturers quote these tuned values in a SPICE Netlist, and you can read off the appropriate values. Otherwise you can determine values for \(X T I, E G\), and XTB by using a datasheet-defined data at a higher temperature \(T_{\mathrm{m} 2}\). The block provides a datasheet parameterization option for this.

You can also tune the values of XTI, \(E G\), and \(X T B\) yourself, to match lab data for your particular device. You can use Simulink Design Optimization software to help tune the values.

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices \(>\) Show thermal port. This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.

Use the thermal port to simulate the effects of generated heat and device temperature. For more information on using thermal ports and on the Thermal port tab parameters, see "Simulating Thermal Effects in Semiconductors".

\section*{Basic Assumptions and Limitations}

The NPN Bipolar Transistor model has the following limitations:
- The block does not account for temperature-dependent effects on the junction capacitances.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

\section*{NPN Bipolar Transistor}

\section*{Dialog \\ Box and Parameters}

Main Tab

\section*{Block Parameters: NPN Bipolar Transistor}

NPN Bipolar Transistor
This block represents an NPN transistor modeled using a variant of the Ebers-Moll equations. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. In addition, this block adds the Early voltage effect, and gives the option to include base, emitter and emitter resistances plus fixed baseemitter and base-collector capacitances. For full details of the equations, consult the documentation. The equation parameters can either be specified directly, or are derived from standard datasheet parameters.

\section*{Parameters}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main & Ohmic Resistance & Capacitance & Temperature Dependence & & \\
\hline \multicolumn{2}{|l|}{Parameterization:} & \multicolumn{2}{|l|}{Specify from a datasheet} & & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Forward current transfer ratio, h_fe:} & \multicolumn{2}{|l|}{100} & & \\
\hline \multicolumn{2}{|l|}{Output admittance, h_oe:} & \multicolumn{2}{|l|}{\(5 \mathrm{e}-5\)} & 1/Ohm & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Collector current at which h parameters are defined:} & \multicolumn{2}{|l|}{1} & mA & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Collector-emitter voltage at which h-parameters are defined:} & \multicolumn{2}{|l|}{5} & V & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Voltage Vbe:} & \multicolumn{2}{|l|}{0.55} & V & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Current Ib for voltage Vbe:} & \multicolumn{2}{|l|}{0.5} & mA & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Reverse current transfer ratio, BR:} & \multicolumn{2}{|l|}{1} & & \\
\hline \multicolumn{2}{|l|}{Measurement temperature:} & \multicolumn{2}{|l|}{25} & C & \(\checkmark\) \\
\hline
\end{tabular}
OK Cancel Help Apply

\section*{NPN Bipolar Transistor}

\section*{Parameterization}

Select one of the following methods for block parameterization:
- Specify from a datasheet - Provide parameters that the block converts to equations that describe the transistor. The block calculates the forward Early voltage VAF as \(I c / h \_o e\), where Ic is the Collector current at which h-parameters are defined parameter value, and \(h \_o e\) is the Output admittance h_oe parameter value [1]. The block sets \(B F\) to the small-signal Forward current transfer ratio \(\mathbf{h} \mathbf{f} \mathbf{f e}\) value. The block calculates the saturation current \(I S\) from the specified Voltage Vbe value and the corresponding Current Ib for voltage Vbe value when \(I c\) is zero. This is the default method.
- Specify using equation parameters directly - Provide equation parameters \(I S, B F\), and \(V A F\).

Forward current transfer ratio \(h_{-} f e\)
Small-signal current gain. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 100 .

Output admittance h_oe
Derivative of the collector current with respect to the collector-emitter voltage for a fixed base current. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is \(5 \mathrm{e}-051 / \Omega\).

Collector current at which h-parameters are defined
The h-parameters vary with operating point, and are defined for this value of the collector current. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 1 mA .

Collector-emitter voltage at which \(h\)-parameters are defined The h-parameters vary with operating point, and are defined for this value of the collector-emitter voltage. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 5 V .

\section*{Voltage Vbe}

Base-emitter voltage when the base current is \(I b\). The [ Vbe Ib ] data pair must be quoted for when the transistor is in the normal active region, that is, not in the saturated region. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 0.55 V .

\section*{Current Ib for voltage Vbe}

Base current when the base-emitter voltage is \(V b e\). The [ Vbe Ib ] data pair must be quoted for when the transistor is in the normal active region, that is, not in the saturated region. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 0.5 mA .

\section*{Forward current transfer ratio BF}

Ideal maximum forward current gain. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 100 .

\section*{Saturation current IS}

Transistor saturation current. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is \(1 \mathrm{e}-14 \mathrm{~A}\).

\section*{Forward Early voltage VAF}

In the standard Ebers-Moll equations, the gradient of the Ic versus Vce curve is zero in the normal active region. The additional forward Early voltage term increases this gradient. The intercept on the \(V c e\)-axis is equal to \(-V A F\) when the linear region is extrapolated. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 200 V .

\section*{Reverse current transfer ratio BR}

Ideal maximum reverse current gain. This value is often not quoted in manufacturer datasheets, because it is not significant when the transistor is biased to operate in the normal active

\section*{NPN Bipolar Transistor}
region. When the value is not known and the transistor is not to be operated on the inverse region, use the default value of 1 .

\section*{Measurement temperature}

Temperature \(T_{\mathrm{m} 1}\) at which Vbe and \(I b\), or \(I S\), are measured. The default value is 25 C .

\section*{NPN Bipolar Transistor}

\section*{Ohmic Resistance Tab}

\section*{Block Parameters: NPN Bipolar Transistor}

NPN Bipolar Transistor
This block represents an NPN transistor modeled using a variant of the Ebers-Moll equations. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. In addition, this block adds the Early voltage effect, and gives the option to include base, emitter and emitter resistances plus fixed baseemitter and base-collector capacitances. For full details of the equations, consult the documentation. The equation parameters can either be specified directly, or are derived from standard datasheet parameters.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Main & Ohmic Resistance & Capacitance & Temperature Dependence \\
\hline
\end{tabular} \begin{tabular}{|lll|}
\hline Collector resistance, RC: & 0.01 & \\
Emitter resistance, RE: & \(1 \mathrm{e}-4\) & Ohm \\
Zero bias base resistance, RB: & 1 & Ohm \\
\hline
\end{tabular}

\section*{Collector resistance RC}

Resistance at the collector. The default value is \(0.01 \Omega\).

\section*{NPN Bipolar Transistor}

\section*{Emitter resistance RE}

Resistance at the emitter. The default value is \(1 \mathrm{e}-4 \Omega\).

\section*{Zero bias base resistance RB}

Resistance at the base at zero bias. The default value is \(1 \Omega\).

\section*{NPN Bipolar Transistor}

\section*{Capacitance Tab}

Block Parameters: NPN Bipolar Transistor

\section*{\(x\)}

NPN Bipolar Transistor
This block represents an NPN transistor modeled using a variant of the Ebers-Moll equations. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. In addition, this block adds the Early voltage effect, and gives the option to include base, emitter and emitter resistances plus fixed baseemitter and base-collector capacitances. For full details of the equations, consult the documentation. The equation parameters can either be specified directly, or are derived from standard datasheet parameters.

Parameters
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main & Ohmic Resistance & Capacitance & Temperature Dependence & & \\
\hline \multicolumn{2}{|l|}{Base-collector junction capacitance:} & 5 & & pF & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Base-emitter junction capacitance:} & 5 & & pF & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Total forward transit time:} & 0 & & us & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Total reverse transit time:} & 0 & & us & \(\checkmark\) \\
\hline
\end{tabular}

\section*{NPN Bipolar Transistor}

\section*{Base-collector junction capacitance}

Parasitic capacitance across the base-collector junction. The default value is 5 pF .

\section*{Base-emitter junction capacitance}

Parasitic capacitance across the base-emitter junction. The default value is 5 pF .

\section*{Total forward transit time}

Represents the mean time for the minority carriers to cross the base region from the emitter to the collector, and is often denoted by the parameter TF [1]. The default value is \(0 \mu \mathrm{~s}\).

\section*{Total reverse transit time}

Represents the mean time for the minority carriers to cross the base region from the collector to the emitter, and is often denoted by the parameter TR [1]. The default value is \(0 \mu \mathrm{~s}\).

\section*{Temperature Dependence Tab}

Block Parameters: NPN Bipolar Transistor

\section*{\(x\)}

NPN Bipolar Transistor
This block represents an NPN transistor modeled using a variant of the Ebers-Moll equations. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. In addition, this block adds the Early voltage effect, and gives the option to include base, emitter and emitter resistances plus fixed baseemitter and base-collector capacitances. For full details of the equations, consult the documentation. The equation parameters can either be specified directly, or are derived from standard datasheet parameters.

Parameters
Main \(\quad\) Ohmic Resistance \(\quad\) Capacitance Temperature Dependence

Parameterization:
None - Simulate at parameter measurement temperature

\section*{NPN Bipolar Transistor}

\section*{Parameterization}

Select one of the following methods for temperature dependence parameterization:
- None Simulate at parameter measurement temperature - Temperature dependence is not modeled, or the model is simulated at the measurement temperature \(T_{\mathrm{m} 1}\) (as specified by the Measurement temperature parameter on the Main tab). This is the default method.
- Model temperature dependence - Provide a value for simulation temperature, to model temperature-dependent effects. You also have to provide a set of additional parameters depending on the block parameterization method. If you parameterize the block from a datasheet, you have to provide values for a second [ Vbe Ib ] data pair and \(h \_f e\) at second measurement temperature. If you parameterize by directly specifying equation parameters, you have to provide the values for XTI, EG, and XTB.

Forward current transfer ratio, \(h \_f e\), at second measurement temperature

Small-signal current gain at the second measurement temperature. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. It must be quoted at the same collector-emitter voltage and collector current as for the Forward current transfer ratio h_fe parameter on the Main tab. The default value is 125 .

\section*{Voltage Vbe at second measurement temperature} Base-emitter voltage when the base current is \(I b\) and the temperature is set to the second measurement temperature. The [Vbe Ib] data pair must be quoted for when the transistor is in the normal active region, that is, not in the saturated region. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. The default value is 0.45 V .

Current Ib for voltage Vbe at second measurement temperature Base current when the base-emitter voltage is \(V b e\) and the temperature is set to the second measurement temperature. The [ Vbe Ib ] data pair must be quoted for when the transistor is in the normal active region, that is, not in the saturated region. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. The default value is 0.5 mA .

\section*{Second measurement temperature}

Second temperature \(T_{\mathrm{m} 2}\) at which \(h \_f e, V b e\), and \(I b\) are measured. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. The default value is 125 C .

\section*{Current gain temperature coefficient, XTB}

Current gain temperature coefficient value. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter on the Main tab. The default value is 0 .

Energy gap, EG
Energy gap value. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter on the Main tab. The default value is 1.11 eV .

\section*{Saturation current temperature exponent, XTI}

Saturation current temperature coefficient value. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter on the Main tab. The default value is 3 .

\section*{Device simulation temperature}

Temperature \(T_{\mathrm{s}}\) at which the device is simulated. The default value is 25 C .

Ports The block has the following ports:

\section*{NPN Bipolar Transistor}

B
Electrical conserving port associated with the transistor base terminal.

C
Electrical conserving port associated with the transistor collector terminal.

E
Electrical conserving port associated with the transistor emitter terminal.

\section*{Examples}

References [1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.
[2] H. Ahmed and P.J. Spreadbury. Analogue and digital electronics for engineers. 2nd Edition, Cambridge University Press, 1984.

See Also
Diode, PNP Bipolar Transistor

\section*{Operational Transconductance Amplifier}

\section*{Purpose}

\section*{Library}

Description


Model behavioral representation of operational transconductance amplifier

Integrated Circuits
The Operational Transconductance Amplifier block provides a behavioral representation of an operational transconductance amplifier. A transconductance amplifier converts an input voltage into an output current. Applications include variable frequency oscillators, variable gain amplifiers and current-controlled filters. These applications exploit the fact that the transconductance gain is a function of current flowing into the control current pin.

To support faster simulation, the behavioral representation does not model the detailed transistor implementation. Therefore, the model is only valid when operating in the linear region, that is, where the device input resistance, output resistance, and transconductance gain all depend linearly on the control current, and are independent of input signal amplitude. The dynamics are approximated by a first-order lag, based on the value you specify for the block parameter Bandwidth.

\section*{Control Current}

The control current pin C is maintained at the voltage that you specify for the Minimum output voltage. In practice, the Minimum output voltage equals the negative supply voltage plus the transistor collector-emitter voltage drop. For example, if the Minimum output voltage for a supply voltage of +-15 V is -14.5 , then to achieve a control current of \(500 \mu \mathrm{~A}\), a resistor connected between the +15 V rail and the control current pin must have a value of (15-(-14.5)) / 500e-6 \(=59 \mathrm{kOhm}\).

\section*{Transconductance}

The relationship between input voltage, \(v\), and transconductance current, \(i_{\mathrm{gm}}\), is:

\section*{Operational Transconductance Amplifier}
\[
\begin{aligned}
& v=v_{+}-v_{-} \\
& i_{g m}=g_{m} \cdot v \\
& g_{m}=\frac{g_{m 0} \cdot i_{c}}{i_{c 0}}
\end{aligned}
\]
where:
- \(v_{+}\)is the voltage presented at the block + pin.
- \(v_{-}\)is the voltage presented at the block - pin.
- \(g_{\mathrm{m}}\) is the transconductance.
- \(i_{\mathrm{c}}\) is the control current flowing into the control current pin C .
- \(i_{c 0}\) is the reference control current, that is, the control current at which transconductance is quoted on the datasheet.
- \(g_{m 0}\) is the transconductance measured at the reference control current \(i_{\mathrm{c} 0}\).

Therefore, increasing control current increases the transconductance.

\section*{Output Resistance and Determining Output Current}

The output resistance, \(R_{\text {out }}\), is defined by:
\[
\begin{aligned}
& i_{\text {gm }}+i_{o}=\frac{v_{o}}{R_{\text {out }}} \\
& R_{\text {out }}=\frac{R_{\text {out } 0} \cdot i_{c 0}}{i_{c}}
\end{aligned}
\]
where:
- \(i_{\mathrm{gm}}\) is the transconductance current.
- \(i_{\mathrm{o}}\) is the output current, defined as positive if flowing into the transconductance amplifier output pin.
- \(i_{\mathrm{c}}\) is the control current flowing into the control current pin C .

\section*{Operational Transconductance Amplifier}
- \(i_{\mathrm{c} 0}\) is the reference control current, that is, the control current at which output resistance is quoted on the datasheet.
- \(R_{\text {out0 } 0}\) is the output resistance measured at the reference control current \(i_{\text {c } 0}\).

Therefore, increasing control current reduces output resistance.

\section*{Input Resistance}

The relationship between input voltage, \(v\), across the + and - pins and the current flowing, \(i\), is:
\[
\begin{aligned}
& \frac{v}{i}=R_{i n} \\
& R_{i n}=\frac{R_{i n 0} \cdot i_{c 0}}{i_{c}}
\end{aligned}
\]
where:
- \(i_{\mathrm{c}}\) is the control current flowing into the control current pin C.
- \(R_{\text {in }}\) is the input resistance for the current control current value, \(i_{c}\).
- \(i_{\mathrm{c} 0}\) is the reference control current, that is, the control current at which input resistance is quoted on the datasheet.
- \(R_{\text {in } 0}\) is the input resistance measured at the reference control current \(i_{\mathrm{c} 0}\).

Therefore, increasing control current reduces input resistance.

\section*{Limits}

Because of the physical construction of an operational transconductance amplifier based on current mirrors, the transconductance current \(i_{\mathrm{gm}}\) cannot exceed the control current. Hence the value of \(i_{\mathrm{gm}}\) is limited by:
\[
-i_{\mathrm{c}} \leq i_{\mathrm{gm}} \leq i_{\mathrm{c}}
\]

\section*{Operational Transconductance Amplifier}

The output voltage is also limited by the supply voltage:
\[
V_{\min } \leq v_{\mathrm{o}} \leq V_{\max }
\]
where \(V_{\text {min }}\) is the Minimum output voltage, and \(V_{\max }\) is the Maximum output voltage. Output voltage limiting is implemented by adding a low resistance to the output when the voltage limit is exceeded. The value of this resistance is set by the Additional output resistance at voltage swing limits parameter.

The transconductance current is also slew-rate limited, a value for slew rate limiting typically being given on datasheets:
\[
-\mu \leq \frac{d i_{g m}}{d t} \leq \mu
\]
where \(\mu\) is the Maximum current slew rate.

\section*{Operational Transconductance Amplifier}

\section*{Dialog Nominal Measurements Tab Box and Parameters}

\section*{Block Parameters: Operational Transconductance Amplifier}

\section*{Operational Transconductance Amplifier}

This block represents a behavioral model of an operational transconductance amplifier such as the LM13700 main simplifying assumption is that the input stage is linear. Input and output resistance are assumed to scal linearly with the ratio of the Reference control current to the control current flowing into port C. Conversely, transconductance is assumed to scale linearly with one over this ratio.

Parameters
\begin{tabular}{|c|c|c|c|}
\hline Nominal Measurements & Dynamics & Limits & \\
\hline Transconductance: & \multicolumn{2}{|c|}{\(9.6 \mathrm{e}+3\)} & uS \\
\hline Input resistance: & \multicolumn{2}{|l|}{25} & kOhm \\
\hline Output resistance: & \multicolumn{2}{|l|}{3} & MOhm \\
\hline Reference control current: & \multicolumn{2}{|l|}{500} & uA \\
\hline
\end{tabular}

\section*{Transconductance}

The transconductance, \(g_{\mathrm{m}}\), when the control current is equal to the Reference control current. This is the ratio of the transconductance current, \(i_{\mathrm{gm}}\), to the voltage difference, \(v\), across the + and - pins. The default value is \(9600 \mu \mathrm{~S}\).

\section*{Operational Transconductance Amplifier}

\section*{Input resistance}

The input resistance, \(R_{\text {in }}\), when the control current is equal to the Reference control current. The input resistance is the ratio of the voltage difference, \(v\), across the + and - pins to the current flowing from the + to the - pin. The default value is 25 kOhm .

\section*{Output resistance}

The output resistance, \(R_{\text {out }}\), when the control current is equal to the Reference control current. See above for the equation defining output resistance. The default value is 3 MOhm.

Reference control current
The control current at which the Transconductance, Input resistance, and Output resistance are quoted. The default value is \(500 \mu \mathrm{~A}\).

\section*{Operational Transconductance Amplifier}

\section*{Dynamics Tab}

\section*{Block Parameters: Operational Transconductance Amplifier}

\section*{Operational Transconductance Amplifier}

This block represents a behavioral model of an operational transconductance amplifier such as the LM13700 main simplifying assumption is that the input stage is linear. Input and output resistance are assumed to scal linearly with the ratio of the Reference control current to the control current flowing into port C. Conversely, transconductance is assumed to scale linearly with one over this ratio.

Parameters
Nominal Measurements Dynamics Limits
Dynamics:
No lag

\section*{Dynamics}

Select one of the following options:
- No lag - Do not model the dynamics of the relationship between output current and input voltage. This is the default.
- Finite bandwidth with slew rate limiting - Model the dynamics of the relationship between output current and input voltage using a first-order lag. If you select this option, the

\section*{Operational Transconductance Amplifier}

\section*{Bandwidth, Maximum current slew rate, and Initial current parameters appear on the Dynamics tab.}

\section*{Bandwidth}

The bandwidth of the first-order lag used to model the dynamics of the relationship between output current and input voltage. The default value is 2 MHz .

\section*{Maximum current slew rate}

The maximum rate-of-change of transconductance current when there is no feedback around the device. Note that datasheets sometimes quote slew rate as a maximum rate of change of voltage. In this case, the value depends on the particular test circuit. To get an accurate value for Maximum current slew rate, reproduce the test circuit in a SimElectronics \({ }^{\circledR}\) model, and tune the parameter value to match the datasheet value. If the test circuit is open-loop, and the load resistance is quoted, you can obtain an approximate value for the Maximum current slew rate by dividing the voltage slew rate by the load resistance. The default value is \(2 \mathrm{~A} / \mu \mathrm{s}\).

\section*{Initial current}

The initial transconductance current (note, not the initial output current). This is the transconductance current sinking to both the internal output resistance, \(R_{\text {out }}\), and the output pin. The default value is 0 A .

\section*{Operational Transconductance Amplifier}

\section*{Limits Tab}

\section*{Block Parameters: Operational Transconductance Amplifier}

\section*{Operational Transconductance Amplifier}

This block represents a behavioral model of an operational transconductance amplifier such as the LM13700 main simplifying assumption is that the input stage is linear. Input and output resistance are assumed to scal linearly with the ratio of the Reference control current to the control current flowing into port C. Conversely, transconductance is assumed to scale linearly with one over this ratio.

Parameters
\begin{tabular}{|c|c|c|c|}
\hline Nominal Measurements & Dynamics & Limits & \\
\hline \multicolumn{2}{|l|}{Minimum output voltage:} & & V \\
\hline \multicolumn{2}{|l|}{Maximum output voltage:} & & V \\
\hline \multicolumn{2}{|l|}{Additional output resistance at voltage swing limits:} & & Ohm \\
\hline \multicolumn{2}{|l|}{Minimum control current for simulation:} & & uA \\
\hline
\end{tabular}

\section*{Minimum output voltage}

The output voltage is limited to be greater than the value of this parameter. The default value is -15 V .

\section*{Maximum output voltage}

The output voltage is limited to be less than the value of this parameter. The default value is 15 V .

\section*{Operational Transconductance Amplifier}

\section*{Additional output resistance at voltage swing limits}

To limit the output voltage swing, an additional output resistance is applied between output and the power rail when the output voltage exceeds the limit. The value of this resistance should be low compared to the output resistance and circuit load resistance. The default value is 1 Ohm .

\section*{Minimum control current for simulation}

The control current measured at the control current pin C is limited to be greater than the value of this parameter. This prevents a potential divide-by-zero when calculating input and output resistance values based on the value of the control current. The default value is \(0.001 \mu \mathrm{~A}\).
Ports The block has the following ports:
\(+\)Positive electrical voltage.
Negative electrical voltage.
CControl current.
OUTOutput current.
See Also Simscape Op-Amp, Band-Limited Op-Amp, Finite-Gain Op-Amp

\section*{Optocoupler}

\section*{Purpose}

Model optocoupler as LED, current sensor, and controlled current source

\section*{Library}

Description


Semiconductor Devices
This block represents an optocoupler using a model that consists of the following components:
- An exponential light-emitting diode in series with a current sensor on the input side
- A controlled current source on the output side

The output-side current flows from the collector junction to the emitter junction. It has a value of \(C T R \cdot I_{d}\), where \(C T R\) is the Current transfer ratio parameter value and \(I_{d}\) is the diode current.
Use the Optocoupler block to interface two electrical circuits without making a direct electrical connection. A common reason for doing this is that the two circuits work at very different voltage levels.

Note Each electrical circuit must have its own Electrical Reference block.

If the output circuit is a phototransistor, typical values for the Current transfer ratio parameter are 0.1 to 0.5 . If the output stage consists of a Darlington pair, the parameter value can be much higher than this. The Current transfer ratio value also varies with the light-emitting diode current, but this effect is not modeled by the Photodiode block.

Some manufacturers provide a maximum data rate for optocouplers. In practice, the maximum data rate depends on the following factors:
- The capacitance of the photodiode and the type of the driving circuit
- The construction of the phototransistor and its associated capacitance

\section*{Optocoupler}

\section*{Basic Assumptions and Limitations}

The Optocoupler block only lets you define the capacitance on the light-emitting diode. You can use the Junction capacitance parameter to add your own capacitance across the collector and emitter connections.

The Optocoupler block lets you model temperature dependence of the underlying diode. For details, see the Diode reference page.

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.

Use the thermal port to simulate the effects of generated heat and device temperature. For more information on using thermal ports and on the Thermal port tab parameters, see "Simulating Thermal Effects in Semiconductors".

The Optocoupler block has the following limitations:
- The output side is modeled as a controlled current source. As such, it only correctly approximates a bipolar transistor operating in its normal active region. To create a more detailed model, connect the Optocoupler output directly to the base of an NPN Bipolar Transistor block, and set the parameters to maintain a correct overall value for the current transfer ratio. If you need to connect optocouplers in series, use this approach to avoid the invalid topology of two current sources in series.
- The temperature dependence of the forward current transfer ratio is not modeled. Typically the temperature dependence of this parameter is much less than that of the optical diode I-V characteristic.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

\section*{Optocoupler}

\section*{Dialog Main Tab \\ Box and Parameters}

Block Parameters: Optocoupler
Optocoupler
This block represents a simplified implementation of an optocoupler. Structurally the model consists of an exponential diode in series with a current sensor on the input-side, and a controlled current source on the output side. The output side current flows from the collector to emitter junction, and is equal to CTR*Id where Id is the diode current and CTR is the Current Transfer Ratio.

Parameters



\section*{Current transfer ratio}

The output current flowing from the transistor collector to emitter junctions is equal to the product of the current transfer ratio and the current flowing the light-emitting diode. The default value is 0.2 .

\section*{Diode parameterization}

Select one of the following methods for model parameterization:

\section*{Optocoupler}
- Use I-V curve data points - Specify measured data at two points on the diode I-V curve. This is the default method.
- Use parameters IS and N - Specify saturation current and emission coefficient.

\section*{Currents [I1 I2]}

A vector of the current values at the two points on the diode I-V curve that the block uses to calculate \(I S\) and \(N\). This parameter is only visible when you select Use I-V curve data points for the Diode parameterization parameter. The default value is [ 0.0010 .015 ] A.

\section*{Voltages [V1 V2]}

A vector of the voltage values at the two points on the diode I-V curve that the block uses to calculate \(I S\) and \(N\). This parameter is only visible when you select Use I-V curve data points for the Diode parameterization parameter. The default value is [ 0.91 .05 ] V.

\section*{Saturation current IS}

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. This parameter is only visible when you select Use parameters IS and \(N\) for the Diode parameterization parameter. The default value is \(1 \mathrm{e}-10 \mathrm{~A}\).

\section*{Measurement temperature}

The temperature at which IS or the I-V curve was measured. The default value is \(25^{\circ} \mathrm{C}\).

\section*{Emission coefficient N}

The diode emission coefficient or ideality factor. This parameter is only visible when you select Use parameters IS and \(N\) for the Diode parameterization parameter. The default value is 2 .

\section*{Ohmic Resistance Tab}

\section*{Block Parameters: Optocoupler}

\section*{Optocoupler}

This block represents a simplified implementation of an optocoupler. Structurally the model consists of an exponential diode in series with a current sensor on the input-side, and a controlled current source on the output side. The output side current flows from the collector to emitter junction, and is equal to CTR*Id where Id is the diode current and CTR is the Current Transfer Ratio.

\section*{Parameters}
\begin{tabular}{|l|c|c|c|}
\hline Main & Ohmic Resistance & Junction Capacitance & Temperature Dependence \\
\hline Ohmic resistance, RS: & 0.1 & Ohm \\
\hline
\end{tabular}

Ohmic resistance RS
The series diode connection resistance. The default value is \(0.1 \Omega\).

\section*{Optocoupler}

\section*{Junction Capacitance Tab}


\section*{Junction capacitance}

Select one of the following options for modeling the diode junction capacitance:
- Fixed or zero junction capacitance - Model the junction capacitance as a fixed value.
- Use C-V curve data points - Specify measured data at three points on the diode C-V curve.
- Use parameters CJO, VJ, M \& FC - Specify zero-bias junction capacitance, junction potential, grading coefficient, and forward-bias depletion capacitance coefficient.

\section*{Optocoupler}

\section*{Zero-bias junction capacitance CJ0}

The value of the capacitance placed in parallel with the exponential diode term. This parameter is only visible when you select Fixed or zero junction capacitance or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 5 pF .

\section*{Junction potential VJ}

The junction potential. This parameter is only visible when you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 1 V .

\section*{Grading coefficient \(M\)}

The coefficient that quantifies the grading of the junction. This parameter is only visible when you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

\section*{Reverse bias voltages [VR1 VR2 VR3]}

A vector of the reverse bias voltage values at the three points on the diode C-V curve that the block uses to calculate CJO, VJ, and \(M\). This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [ \(\left.\begin{array}{llll}0.1 & 10 & 100\end{array}\right]\) V.

\section*{Corresponding capacitances [C1 C2 C3]}

A vector of the capacitance values at the three points on the diode \(\mathrm{C}-\mathrm{V}\) curve that the block uses to calculate CJO, VJ, and M. This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [ \(\left.\begin{array}{lll}3.5 & 1 & 0.4\end{array}\right] \mathrm{pF}\).

\section*{Capacitance coefficient FC}

Fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Use C-V curve data points or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

\section*{Optocoupler}

\section*{Temperature Dependence Tab}


\section*{Parameterization}

Select one of the following methods for temperature dependence parameterization:
- None Simulate at parameter measurement temperature - Temperature dependence is not modeled, or the model is simulated at the measurement temperature \(T_{\mathrm{m} 1}\) (as specified by the Measurement temperature parameter on the Main tab). This is the default method.
- Use an I-V data point at second measurement temperature T2 - If you select this option, you specify

\section*{Optocoupler}
a second measurement temperature \(T_{\mathrm{m} 2}\), and the current and voltage values at this temperature. The model uses these values, along with the parameter values at the first measurement temperature \(T_{\mathrm{m} 1}\), to calculate the energy gap value.
- Specify saturation current at second measurement temperature T2 - If you select this option, you specify a second measurement temperature \(T_{\mathrm{m} 2}\), and saturation current value at this temperature. The model uses these values, along with the parameter values at the first measurement temperature \(T_{\mathrm{m} 1}\), to calculate the energy gap value.
- Specify the energy gap EG - Specify the energy gap value directly.

\section*{Current I1 at second measurement temperature}

Specify the diode current \(I 1\) value when the voltage is \(V 1\) at the second measurement temperature. This parameter is only visible when you select Use an I-V data point at second measurement temperature T2 for the Parameterization parameter. The default value is 0.029 A .

Voltage V1 at second measurement temperature
Specify the diode voltage \(V 1\) value when the current is \(I 1\) at the second measurement temperature. This parameter is only visible when you select Use an I-V data point at second measurement temperature T2 for the Parameterization parameter. The default value is 1.05 V .

Saturation current, IS, at second measurement temperature Specify the saturation current \(I S\) value at the second measurement temperature. This parameter is only visible when you select Specify saturation current at second measurement temperature T2 for the Parameterization parameter. The default value is \(1.8 \mathrm{e}-8 \mathrm{~A}\).

\section*{Second measurement temperature}

Specify the value for the second measurement temperature. This parameter is only visible when you select either Use an

\section*{Optocoupler}

I-V data point at second measurement temperature T2 or Specify saturation current at second measurement temperature T2 for the Parameterization parameter. The default value is 125 C .

\section*{Energy gap parameterization}

This parameter is only visible when you select Specify the energy gap EG for the Parameterization parameter. It lets you select a value for the energy gap from a list of predetermined options, or specify a custom value:
- Use nominal value for silicon (EG=1.11eV) - This is the default.
- Use nominal value for 4H-SiC silicon carbide ( \(\mathrm{EG}=3.23 \mathrm{eV}\) )
- Use nominal value for 6H-SiC silicon carbide (EG=3.00eV)
- Use nominal value for germanium ( \(\mathrm{EG}=0.67 \mathrm{eV}\) )
- Use nominal value for gallium arsenide (EG=1.43eV)
- Use nominal value for selenium (EG=1.74eV)
- Use nominal value for Schottky barrier diodes (EG=0.69eV)
- Specify a custom value - If you select this option, the Energy gap, EG parameter appears in the dialog box, to let you specify a custom value for \(E G\).

Energy gap, EG
Specify a custom value for the energy gap, \(E G\). This parameter is only visible when you select Specify a custom value for the Energy gap parameterization parameter. The default value is 1.11 eV .

\section*{Saturation current temperature exponent parameterization}

Select one of the following options to specify the saturation current temperature exponent value:
- Use nominal value for pn-junction diode (XTI=3) This is the default.
- Use nominal value for Schottky barrier diode (XTI=2)
- Specify a custom value - If you select this option, the Saturation current temperature exponent, XTI parameter appears in the dialog box, to let you specify a custom value for \(X T I\).

\section*{Saturation current temperature exponent, XTI}

Specify a custom value for the saturation current temperature exponent, XTI. This parameter is only visible when you select Specify a custom value for the Saturation current temperature exponent parameterization parameter. The default value is 3 .

\section*{Device simulation temperature}

Specify the value for the temperature \(T_{\mathrm{s}}\), at which the device is to be simulated. The default value is 25 C.

\section*{Ports \\ The block has the following ports:}

Electrical conserving port associated with the diode positive terminal.

Electrical conserving port associated with the diode negative terminal.

C
Electrical conserving port associated with the transistor collector terminal.

E
Electrical conserving port associated with the transistor emitter terminal.

References [1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.
[2] H. Ahmed and P.J. Spreadbury. Analogue and digital electronics for engineers. 2nd Edition, Cambridge University Press, 1984.

See Also Diode, NPN Bipolar Transistor, Simscape Controlled Current Source

\section*{Purpose}

Model P-Channel JFET

\section*{Library}

Description


Semiconductor Devices

The P-Channel JFET block uses the Shichman and Hodges equations to represent a P-Channel JFET using a model with the following structure:


G is the transistor gate, D is the transistor drain and S is the transistor source. The drain current, \(I_{\mathrm{D}}\), depends on the region of operation and whether the transistor is operating in normal or inverse mode.
- In normal mode ( \(-V_{D S} \geq 0\) ), the block provides the following relationship between the drain current \(I_{\mathrm{D}}\) and the drain-source voltage \(V_{\mathrm{DS}}\).

\section*{P-Channel JFET}
\begin{tabular}{|c|c|c|}
\hline Region & Applicable Range of \(\boldsymbol{V}_{\mathrm{GS}}\) and \(V_{\text {DS }}\) Values & Corresponding \(I_{\text {d }}\) Equation \\
\hline Off & \(-V_{\mathrm{GS}}<-V_{\mathrm{t} 0}\) & \(I_{\mathrm{D}}=0\) \\
\hline Linear & \[
\begin{aligned}
& 0<-V_{\mathrm{DS}}<-V_{\mathrm{GS}}+ \\
& V_{\mathrm{t} 0}
\end{aligned}
\] & \[
\begin{aligned}
& I_{d s}=\beta V_{d s}\left(2\left(-V_{g S}+V_{t 0}\right)+V_{d s}\right)\left(1-\lambda V_{d S}\right) I_{\mathrm{D}}= \\
& \beta V_{\mathrm{DS}}\left(2\left(-V_{\mathrm{GS}}+V_{\mathrm{t} 0}\right)+V_{\mathrm{DS}}\right)\left(1-\lambda V_{\mathrm{DS}}\right)
\end{aligned}
\] \\
\hline Saturated & \[
\begin{aligned}
& 0<-V_{\mathrm{GS}}+V_{\mathrm{t} 0}< \\
& -V_{\mathrm{DS}}<
\end{aligned}
\] & \[
\begin{aligned}
& I_{\mathrm{ds}}=-\beta\left(-V_{g s}+V_{\mathrm{to}}\right)^{2}\left(1-\lambda V_{d \mathrm{~s}}\right) I_{\mathrm{D}}=-\beta\left(-V_{\mathrm{GS}}+\right. \\
& \left.V_{\mathrm{t} 0}\right)^{2}\left(1-\lambda V_{\mathrm{DS}}\right)
\end{aligned}
\] \\
\hline
\end{tabular}
- In inverse mode ( \(-V_{D S}<0\) ), the block provides the following relationship between the drain current \(I_{\mathrm{D}}\) and the drain-source voltage \(V_{\mathrm{DS}}\).
\begin{tabular}{l|l|l}
\hline Region & \begin{tabular}{l} 
Applicable \\
Range of \(\boldsymbol{V}_{\mathbf{G S}}\) \\
and \(\boldsymbol{V}_{\mathrm{DS}}\) Values
\end{tabular} & Corresponding \(I_{\mathbf{D}}\) Equation \\
\hline Off & \(-V_{\mathrm{GD}}<-V_{\mathrm{t} 0}\) & \(I_{\mathrm{D}}=0\) \\
\hline Linear & \begin{tabular}{l}
\(0<V_{D S}<-V_{\mathrm{GD}}+\) \\
\(V_{\mathrm{t} 0}\)
\end{tabular} & \(I_{\mathrm{D}}=\beta V_{\mathrm{DS}}\left(2\left(-V_{\mathrm{GD}}+V_{\mathrm{t} 0}\right)-V_{\mathrm{DS}}\right)\left(1+\lambda V_{\mathrm{DS}}\right)\) \\
\hline Saturated & \begin{tabular}{l}
\(0<-V_{\mathrm{GD}}+V_{\mathrm{t} 0}<\) \\
\(V_{D S}\)
\end{tabular} & \(I_{\mathrm{D}}=\beta\left(-V_{\mathrm{GD}}+V_{\mathrm{t} 0}\right)^{2}\left(1+\lambda V_{\mathrm{DS}}\right)\) \\
\hline
\end{tabular}

In the preceding equations:
- \(V_{\mathrm{GS}}\) is the gate-source voltage.
- \(V_{\mathrm{GD}}\) is the gate-drain voltage.
- \(V_{\mathrm{t} 0}\) is the threshold voltage. If you select Specify using equation parameters directly for the Parameterization parameter, \(V_{\mathrm{t} 0}\)
is the Threshold voltage parameter value. Otherwise, the block calculates \(V_{\mathrm{t} 0}\) from the datasheet parameters you specify.
- \(\beta\) is the transconductance parameter. If you select Specify using equation parameters directly for the Parameterization parameter, \(\beta\) is the Transconductance parameter parameter value. Otherwise, the block calculates \(\beta\) from the datasheet parameters you specify.
- \(\lambda\) is the channel-length modulation parameter. If you select Specify using equation parameters directly for the Parameterization parameter, \(\lambda\) is the Channel-length modulation parameter value. Otherwise, the block calculates \(\lambda\) from the datasheet parameters you specify.

The currents in each of the diodes satisfy the exponential diode equation
\[
\begin{aligned}
& I_{G D}=-I S \cdot\left(e^{-q V_{G D} / k T_{m 1}}-1\right) \\
& I_{G S}=-I S \cdot\left(e^{-q V_{G S} / k T_{m 1}}-1\right)
\end{aligned}
\]
where:
- IS is the saturation current. If you select Specify using equation parameters directly for the Parameterization parameter, \(I S\) is the Saturation current parameter value. Otherwise, the block calculates \(I S\) from the datasheet parameters you specify.
- \(q\) is the elementary charge on an electron (1.602176e-19 Coulombs).
- \(k\) is the Boltzmann constant ( \(1.3806503 \mathrm{e}-23 \mathrm{~J} / \mathrm{K}\) ).
- \(T_{\mathrm{m} 1}\) is the measurement temperature. The value comes from the Measurement temperature parameter.

The block models gate junction capacitance as a fixed gate-drain capacitance \(C_{G D}\) and a fixed gate-source capacitance \(C_{G S}\). If you select Specify using equation parameters directly for the

Parameterization parameter, you specify these values directly using the Gate-drain junction capacitance and Gate-source junction capacitance parameters. Otherwise, the block derives them from the Input capacitance Ciss and Reverse transfer capacitance Crss parameter values. The two parameterizations are related as follows:
- \(C_{G D}=C r s s\)
- \(C_{G S}=\) Ciss - Crss

\section*{Modeling Temperature Dependence}

The default behavior is that dependence on temperature is not modeled, and the device is simulated at the temperature for which you provide block parameters. You can optionally include modeling the dependence of the transistor static behavior on temperature during simulation. Temperature dependence of the junction capacitances is not modeled, this being a much smaller effect.

When including temperature dependence, the transistor defining equations remain the same. The measurement temperature value, \(T_{\mathrm{m} 1}\), is replaced with the simulation temperature, \(T_{\mathrm{s}}\). The transconductance, \(\beta\), and the threshold voltage, \(V_{\mathrm{t} 0}\), become a function of temperature according to the following equations:
\[
\begin{aligned}
& \beta_{T s}=\beta_{T m 1}\left(\frac{T_{s}}{T_{m 1}}\right)^{B E X} \\
& V_{\mathrm{t} 0 \mathrm{~s}}=V_{\mathrm{t} 01}+a\left(T_{\mathrm{s}}-T_{\mathrm{m} 1}\right)
\end{aligned}
\]
where:
- \(T_{\mathrm{m} 1}\) is the temperature at which the transistor parameters are specified, as defined by the Measurement temperature parameter value.
- \(T_{\mathrm{s}}\) is the simulation temperature.
- \(\beta_{\mathrm{Tm} 1}\) is JFET transconductance at the measurement temperature.
- \(\beta_{\text {Ts }}\) is JFET transconductance at the simulation temperature. This is the transconductance value used in the JFET equations when temperature dependence is modeled.
- \(V_{\mathrm{t} 01}\) is the threshold voltage at measurement temperature.
- \(V_{\mathrm{tos}}\) is the threshold voltage at simulation temperature. This is the threshold voltage value used in the JFET equations when temperature dependence is modeled.
- \(B E X\) is the mobility temperature exponent. A typical value of \(B E X\) is -1.5 .
- \(\alpha\) is the gate threshold voltage temperature coefficient, \(d V_{\mathrm{th}} / d T\).

For most JFETS, you can use the default value of -1.5 for \(B E X\). Some datasheets quote the value for \(a\), but most typically they provide the temperature dependence for the saturated drain current, \(I \_d s s\). Depending on the block parameterization method, you have two ways of specifying \(a\) :
- If you parameterize the block from a datasheet, you have to provide \(I \_d s s\) at a second measurement temperature. The block then calculates the value for \(a\) based on this data.
- If you parameterize by specifying equation parameters, you have to provide the value for \(\alpha\) directly.

If you have more data comprising drain current as a function of gate-source voltage for fixed drain-source voltage plotted at more than one temperature, then you can also use Simulink Design Optimization software to help tune the values for \(\alpha\) and \(B E X\).

In addition, the saturation current term, \(I S\), in the gate-drain and gate-source current equations depends on temperature
\[
I S_{T s}=I S_{T m 1} \cdot\left(T_{s} / T_{m 1}\right)^{X T I} \cdot \exp \left(-\frac{E G}{k T_{s}}\left(1-T_{s} / T_{m 1}\right)\right)
\]
where:
- \(I S_{\mathrm{Tm} 1}\) is the saturation current at the measurement temperature.
- \(I S_{T \mathrm{~T}}\) is the saturation current at the simulation temperature. This is the saturation current value used in the bipolar transistor equations when temperature dependence is modeled.
- \(E G\) is the energy gap.
- \(k\) is the Boltzmann constant ( \(1.3806503 \mathrm{e}-23 \mathrm{~J} / \mathrm{K}\) ).
- XTI is the saturation current temperature exponent.

Similar to \(\alpha\), you have two ways of specifying \(E G\) and XTI:
- If you parameterize the block from a datasheet, you have to specify the gate reverse current, \(I \_g s s\), at a second measurement temperature. The block then calculates the value for \(E G\) based on this data and assuming a p-n junction nominal value of 3 for XTI.
- If you parameterize by specifying equation parameters, you have to provide the values for \(E G\) and \(X T I\) directly. This option gives you most flexibility to match device behavior, for example, if you have a graph of \(I_{-g} g s\) as a function of temperature. With this data you can use Simulink Design Optimization software to help tune the values for \(E G\) and XTI.

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.
Use the thermal port to simulate the effects of generated heat and device temperature. For more information on using thermal ports and on the Thermal port tab parameters, see "Simulating Thermal Effects in Semiconductors".

\section*{P-Channel JFET}

\section*{Basic \\ Assumptions and Limitations}

The model is based on the following assumptions:
- This block does not allow you to specify initial conditions on the junction capacitances. If you select the Start simulation from steady state option in the Solver Configuration block, the block solves the initial voltages to be consistent with the calculated steady state. Otherwise, voltages are zero at the start of the simulation.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.
- The block does not account for temperature-dependent effects on the junction capacitances.
- When you specify \(I \_d s s\) at a second measurement temperature, it must be quoted for the same working point (that is, the same drain current and gate-source voltage) as for the \(I_{-} d s s\) value on the Main tab. Inconsistent values for \(I_{-} d s s\) at the higher temperature will result in unphysical values for \(\alpha\) and unrepresentative simulation results.
- You may need to tune the value of \(B E X\) to replicate the \(I_{\mathrm{D}}-V_{\mathrm{GS}}\) relationship (if available) for a given device. The value of \(B E X\) affects whether the \(I_{\mathrm{D}}-V_{\mathrm{GS}}\) curves for different temperatures cross each other, or not, for the ranges of \(I_{\mathrm{D}}\) and \(V_{\mathrm{GS}}\) considered.

\section*{P-Channel JFET}

\section*{Dialog Main Tab \\ Box and Parameters}

\section*{Block Parameters: P-Channel JFET}

\section*{P-Channel JFET}

This block represents a P-Channel JFET. The drain current Id for negative Vds (normal operation) is given by:
Id \(=0\) if \(-\mathrm{Vgs}-\mathrm{Vt} 0<0\) (off)
\(\mathrm{Id}=-\mathrm{B}^{*} \mathrm{Vds} \mathrm{F}^{*}\left[2^{*}(-\mathrm{Vgs}-\mathrm{Vt} 0)+\mathrm{Vds}\right]^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(\left.0<-\mathrm{Vds}<-\mathrm{Vgs}-\mathrm{Vt} 0\right]\) (linear region)
Id \(=-B^{*}(-\mathrm{Vgs}-\mathrm{Vt0} 0)^{\wedge} 2^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<-\mathrm{Vgs}-\mathrm{Vt} 0<-\mathrm{Vds}\) (saturated region)
where B is the Transconductance parameter, Vt0 is the Threshold voltage, L is the Channel-length modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.

\section*{Parameters}


\section*{Parameterization}

Select one of the following methods for block parameterization:
- Specify from a datasheet - Provide parameters that the block converts to equations that describe the transistor. This is the default method.
- Specify using equation parameters directly - Provide equation parameters \(\beta, I S, V_{\mathrm{t} 0}\), and \(\lambda\).

\section*{Gate reverse current, I_gss}

The reverse current that flows in the diode when the drain and source are short-circuited and a large positive gate-source voltage is applied. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 5 nA .

\section*{Saturated drain current, I_dss}

The current that flows when a large negative drain-source voltage is applied for a specified gate-source voltage. For a depletion-mode device, this gate-source voltage may be zero, in which case \(I \_d s s\) may be referred to as the zero-gate voltage drain current. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is -3 mA .

I_dss measurement point, [V_gs V_ds]
A vector of the values of \(V_{\mathrm{GS}}\) and \(V_{\mathrm{DS}}\) at which \(I_{-} d s s\) is measured. Normally \(V_{\mathrm{GS}}\) is zero. \(V_{\mathrm{DS}}\) should be greater than zero. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is [ 0 -15] V.

\section*{Small-signal parameters, [g_fs g_os]}

A vector of the values of \(g \_f s\) and \(g \_o s . g \_f s\) is the forward transfer conductance, that is, the conductance for a fixed drain-source voltage. g_os is the output conductance, that is, the conductance for a fixed gate-source voltage. This parameter is only visible when you select Specify from a datasheet for the

Parameterization parameter. The default value is [ \(2.5 \mathrm{e}+3\) 75 ] uS.
Small-signal measurement point [ \(V_{-}\)gs \(V_{-} d s\) ]
A vector of the values of \(V_{\mathrm{GS}}\) and \(V_{\mathrm{DS}}\) at which \(g \_f s\) and g_os are measured. \(V_{\text {DS }}\) should be greater than zero. For depletion-mode devices, \(V_{\mathrm{GS}}\) is typically zero. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is [ 0-15 ] V.

\section*{Transconductance parameter}

The derivative of drain current with respect to gate voltage. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is \(1 \mathrm{e}-04 \mathrm{~A} / \mathrm{V}^{2}\).

\section*{Saturation current}

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is \(1 \mathrm{e}-14 \mathrm{~A}\).

\section*{Threshold voltage}

The gate-source voltage above which the transistor produces a nonzero drain current. For an enhancement device, Vt0 should be negative. For a depletion mode device, Vt0 should be positive. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 2 V .

\section*{Channel-length modulation}

The channel-length modulation. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is \(01 / \mathrm{V}\).

\section*{Measurement temperature}

The temperature for which the datasheet parameters are quoted. The default value is 25 C .

\section*{P-Channel JFET}

\section*{Ohmic Resistance Tab}

\section*{Block Parameters: P-Channel JFET}

P-Channel JFET
This block represents a P-Channel JFET. The drain current Id for negative Vds (normal operation) is given by:
Id \(=0\) if \(-\mathrm{Vgs}-\mathrm{Vt} 0<0\) (off)
\(\mathrm{Id}=-\mathrm{B}^{*} \mathrm{Vds}{ }^{*}\left[2^{*}(-\mathrm{Vgs}-\mathrm{Vt0} 0)+\mathrm{Vds}\right]^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(\left.0<-\mathrm{Vds}<-\mathrm{Vgs}-\mathrm{Vt} 0\right]\) (linear region)
\(\mathrm{Id}=-\mathrm{B}^{*}(-\mathrm{Vgs}-\mathrm{Vt0} 0)^{\wedge} 2^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<-\mathrm{Vgs}-\mathrm{Vt0} 0<-\mathrm{Vds}\) (saturated region)
where B is the Transconductance parameter, Vt0 is the Threshold voltage, L is the Channel-length modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Main & Ohmic Resistance & Junction Capacitance & Temperature Dependence \\
\hline Source ohmic resistance: & \(\boxed{1 e-4}\) & Ohm \\
Drain ohmic resistance: & \(\boxed{0.01}\) & Ohm \\
& & & \\
\hline
\end{tabular}

\section*{Source ohmic resistance}

The transistor source resistance. The default value is \(1 \mathrm{e}-4 \Omega\). The value must be greater than or equal to 0 .

\section*{Drain ohmic resistance}

The transistor drain resistance. The default value is \(0.01 \Omega\). The value must be greater than or equal to 0 .

\section*{Junction Capacitance Tab}

Block Parameters: P-Channel JFET
P-Channel JFET
This block represents a P-Channel JFET. The drain current Id for negative Vds (normal operation) is given by:
Id \(=0\) if \(-\mathrm{Vgs}-\mathrm{Vt} 0<0\) (off)
Id \(=-\mathrm{B}^{*} \mathrm{Vds} \mathrm{F}^{*}\left[2^{*}(-\mathrm{Vgs}-\mathrm{Vt} 0)+\mathrm{Vds}\right]^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<-\mathrm{Vds}<-\mathrm{Vgs}-\mathrm{Vt0} 0\) (linear region)
Id \(=-\mathrm{B}^{*}(-\mathrm{Vgs}-\mathrm{Vt} 0)^{\wedge} 2^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<-\mathrm{Vgs}-\mathrm{Vt} 0<-\mathrm{Vds}\) (saturated region)
where B is the Transconductance parameter, Vt 0 is the Threshold voltage, L is the Channel-length modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.

Parameters
Main \begin{tabular}{l|l|l|}
\hline Ohmic Resistance Junction Capacitance & Temperature Dependence \\
\hline
\end{tabular}
Parameterization:
Input capacitance, Ciss:
Reverse transfer capacitance, Crss:


\section*{Parameterization}

Select one of the following methods for block parameterization:
- Specify from a datasheet - Provide parameters that the block converts to junction capacitance values. This is the default method.
- Specify using equation parameters directly - Provide junction capacitance parameters directly.

\section*{Input capacitance, Ciss}

The gate-source capacitance with the drain shorted to the source. This parameter is only visible when you select Specify from a datasheet for the Model junction capacitance parameter. The default value is 4.5 pF .

\section*{Reverse transfer capacitance, Crss}

The drain-gate capacitance with the source connected to ground. This parameter is only visible when you select Specify from a datasheet for the Model junction capacitance parameter. The default value is 1.5 pF .

\section*{Gate-source junction capacitance}

The value of the capacitance placed between the gate and the source. This parameter is only visible when you select Specify using equation parameters directly for the Model junction capacitance parameter. The default value is 3 pF .

\section*{Gate-drain junction capacitance}

The value of the capacitance placed between the gate and the drain. This parameter is only visible when you select Specify using equation parameters directly for the Model junction capacitance parameter. The default value is 1.5 pF .

\section*{P-Channel JFET}

\section*{Temperature Dependence Tab}

\section*{Block Parameters: P-Channel JFET}
```

x

```

P-Channel JFET
This block represents a P-Channel JFET. The drain current Id for negative Vds (normal operation) is given by:
```

Id =0 if -Vgs-Vt0 < 0 (off)
Id = -B*Vds*[2* (-Vgs - Vt0) + Vds]*
Id = - - * (-Vgs - Vt0)^2* (1+L* |Vds |) if 0<-Vgs - Vt0 < -Vds (saturated region)

```
where B is the Transconductance parameter, Vt0 is the Threshold voltage, L is the Channel-length modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.

\section*{Parameters}
\begin{tabular}{|l|l|l|}
\hline Main & Ohmic Resistance & Junction Capacitance \\
\hline Parameterization: & & \\
\hline None - Simulate at parameter measurement temperature \\
\hline
\end{tabular}

\section*{Parameterization}

Select one of the following methods for temperature dependence parameterization:
- None Simulate at parameter measurement temperature - Temperature dependence is not modeled. This is the default method.
- Model temperature dependence - Model temperature-dependent effects. You also have to provide a set of additional parameters depending on the block parameterization method. If you parameterize the block from a datasheet, you have to provide values for \(I_{-}\)gss and \(I_{-} d s s\) at second measurement temperature. If you parameterize by directly specifying equation parameters, you have to provide the values for \(E G, X T I\), and the gate threshold voltage temperature coefficient, \(d V_{\mathrm{t} 0} / d T\). Regardless of the block parameterization method, you also have to provide values for \(B E X\) and for the simulation temperature, \(T_{\mathrm{s}}\).

Gate reverse current, I_gss, at second measurement temperature
The value of the gate reverse current, \(I \_g s s\), at the second measurement temperature. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. It must be quoted for the same working point (drain current and gate-source voltage) as the Drain-source on resistance, R_DS(on) parameter on the Main tab. The default value is 950 nA .

Saturated drain current, I_dss, at second measurement temperature

The value of the saturated drain current, \(I_{-} d s s\), at the second measurement temperature, and when the \(I \_d s s\) measurement point is the same as defined by the \(\mathbf{I}\) _dss measurement point, [V_gs V_ds] parameter on the Main tab. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. The default value is -2.3 mA .

\section*{Second measurement temperature}

Second temperature \(T_{\mathrm{m} 2}\) at which Gate reverse current, I_gss, at second measurement temperature and Saturated drain current, I_dss, at second measurement temperature are measured. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. The default value is 125 C.

Energy gap, EG
Energy gap value. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter on the Main tab. The default value is 1.11 eV .

Saturation current temperature exponent, XTI
Saturation current temperature coefficient value. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter on the Main tab. The default value is 3 .

\section*{Gate threshold voltage temperature coefficient, \(\mathrm{dVt0} / \mathrm{dT}\) The rate of change of gate threshold voltage with temperature. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter on the Main tab. The default value is \(1 \mathrm{mV} / \mathrm{K}\).}

\section*{Mobility temperature exponent, BEX}

Mobility temperature coefficient value. You can use the default value for most JFETs. See the "Basic Assumptions and Limitations" on page 1-389 section for additional considerations. The default value is -1.5 .

\section*{Device simulation temperature}

Temperature \(T_{\mathrm{s}}\) at which the device is simulated. The default value is 25 C .

Ports The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

D
Electrical conserving port associated with the transistor drain terminal.

S
Electrical conserving port associated with the transistor source terminal.

\author{
References \\ [1] H. Shichman and D. A. Hodges, Modeling and simulation of insulated-gate field-effect transistor switching circuits. IEEE J. Solid State Circuits, SC-3, 1968. \\ [2] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 2.
}

\section*{See Also}

N-Channel JFET

\section*{P-Channel MOSFET}

Purpose

\section*{Library}

Description

Model P-Channel MOSFET using Shichman-Hodges equation
Semiconductor Devices
The P-Channel MOSFET block uses the Shichman and Hodges equations [1] for an insulated-gate field-effect transistor to represent a P-Channel MOSFET.

The drain-source current, \(I_{\mathrm{DS}}\), depends on the region of operation:
- In the off region \(\left(-V_{\mathrm{GS}}<-V_{\mathrm{th}}\right)\) the drain-source current is:
\[
I_{D S}=0
\]
- In the linear region \(\left(0<-V_{\mathrm{DS}}<-V_{\mathrm{GS}}+V_{\mathrm{th}}\right)\) the drain-source current is:
\[
I_{D S}=-K\left(\left(V_{G S}-V_{t h}\right) V_{D S}-V_{D S}{ }^{2} / 2\right)\left(1+\lambda\left|V_{D S}\right|\right)
\]
- In the saturated region \(\left(0<-V_{\mathrm{GS}}+V_{\mathrm{th}}<-V_{\mathrm{DS}}\right)\) the drain-source current is:
\[
I_{D S}=-(K / 2)\left(V_{G S}-V_{t h}\right)^{2}\left(1+\lambda\left|V_{D S}\right|\right)
\]

In the preceding equations:
- \(K\) is the transistor gain.
- \(V_{\mathrm{DS}}\) is the positive drain-source voltage.
- \(V_{\mathrm{GS}}\) is the gate-source voltage.
- \(V_{\mathrm{th}}\) is the threshold voltage.
- \(\lambda\) is the channel modulation.

\section*{P-Channel MOSFET}

\section*{Charge Model}

The block models gate junction capacitance as a fixed gate-source capacitance \(C_{G S}\) and either a fixed or a nonlinear gate-drain capacitance \(C_{\text {GD }}\).

If you select Specify using equation parameters directly for the Parameterization parameter in the Junction Capacitance tab, you specify the Gate-drain junction capacitance and Gate-source junction capacitance parameters directly. Otherwise, the block derives them from the Input capacitance Ciss and Reverse transfer capacitance Crss parameter values. The two parameterizations are related as follows:
- \(C_{G D}=C r s s\)
- \(C_{\mathrm{GS}}=\) Ciss \(-C r s s\)

If you select the Gate-drain charge function is nonlinear option for the Charge-voltage linearity parameter, then the gate-drain charge relationship is defined by the piecewise-linear function shown in the following figure.

\section*{P-Channel MOSFET}


\section*{Nonlinear gate-drain charge function}

For instructions on how to map a time response to device capacitance values, see the N-Channel IGBT block reference page. However, this mapping is only approximate because the Miller voltage typically varies more from the threshold voltage than in the case for the IGBT.

\section*{Modeling Temperature Dependence}

The default behavior is that dependence on temperature is not modeled, and the device is simulated at the temperature for which you provide

\section*{P-Channel MOSFET}
block parameters. You can optionally include modeling the dependence of the transistor static behavior on temperature during simulation. Temperature dependence of the junction capacitances is not modeled, this being a much smaller effect.
When including temperature dependence, the transistor defining equations remain the same. The gain, \(K\), and the threshold voltage, \(V_{\text {th }}\), become a function of temperature according to the following equations:
\[
\begin{aligned}
& K_{T s}=K_{T m 1}\left(\frac{T_{s}}{T_{m 1}}\right)^{B E X} \\
& V_{\text {ths }}=V_{\text {th1 }}+a\left(T_{\mathrm{s}}-T_{\mathrm{m} 1}\right)
\end{aligned}
\]
where:
- \(T_{\mathrm{m} 1}\) is the temperature at which the transistor parameters are specified, as defined by the Measurement temperature parameter value.
- \(T_{\mathrm{s}}\) is the simulation temperature.
- \(K_{\mathrm{Tm} 1}\) is the transistor gain at the measurement temperature.
- \(K_{\mathrm{Ts}}\) is the transistor gain at the simulation temperature. This is the transistor gain value used in the MOSFET equations when temperature dependence is modeled.
- \(V_{\text {th } 1}\) is the threshold voltage at the measurement temperature.
- \(V_{\text {ths }}\) is the threshold voltage at the simulation temperature. This is the threshold voltage value used in the MOSFET equations when temperature dependence is modeled.
- \(B E X\) is the mobility temperature exponent. A typical value of \(B E X\) is -1.5 .
- \(\alpha\) is the gate threshold voltage temperature coefficient, \(d V_{\mathrm{th}} / d T\).

\section*{P-Channel MOSFET}

For most MOSFETS, you can use the default value of -1.5 for \(B E X\). Some datasheets quote the value for \(a\), but most typically they provide the temperature dependence for drain-source on resistance, \(R_{D S}(o n)\). Depending on the block parameterization method, you have two ways of specifying \(a\) :
- If you parameterize the block from a datasheet, you have to provide \(R_{D S}(o n)\) at a second measurement temperature. The block then calculates the value for \(\alpha\) based on this data.
- If you parameterize by specifying equation parameters, you have to provide the value for \(a\) directly.

If you have more data comprising drain current as a function of gate-source voltage for more than one temperature, then you can also use Simulink Design Optimization software to help tune the values for \(a\) and \(B E X\).

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.

Use the thermal port to simulate the effects of generated heat and device temperature. For more information on using thermal ports and on the Thermal port tab parameters, see "Simulating Thermal Effects in Semiconductors".

\section*{Basic Assumptions and Limitations}

When modeling temperature dependence, consider the following:
- The block does not account for temperature-dependent effects on the junction capacitances.
- When you specify \(R_{D S}(\) on \()\) at a second measurement temperature, it must be quoted for the same working point (that is, the same drain current and gate-source voltage) as for the other \(R_{D S}(o n)\) value.

\section*{P-Channel MOSFET}

Inconsistent values for \(R_{D S}(o n)\) at the higher temperature will result in unphysical values for \(\alpha\) and unrepresentative simulation results. Typically \(R_{D S}(o n)\) increases by a factor of about 1.5 for a hundred degree increase in temperature.
- You may need to tune the values of \(B E X\) and threshold voltage, \(V_{\mathrm{th}}\), to replicate the \(V_{\mathrm{DS}}-V_{\mathrm{GS}}\) relationship (if available) for a given device. Increasing \(V_{\text {th }}\) moves the \(V_{\mathrm{DS}}-V_{\mathrm{GS}}\) plots to the right. The value of \(B E X\) affects whether the \(V_{\mathrm{DS}}-V_{\mathrm{GS}}\) curves for different temperatures cross each other, or not, for the ranges of \(V_{\mathrm{DS}}\) and \(V_{\mathrm{GS}}\) considered. Therefore, an inappropriate value can result in the different temperature curves appearing to be reordered. Quoting \(R_{D S}(o n)\) values for higher currents, preferably close to the current at which it will operate in your circuit, will reduce sensitivity to the precise value of \(B E X\).

\section*{P-Channel MOSFET}

\section*{Dialog Box and Parameters}

Main Tab

D Block Parameters: P-Channel MOSFET
P-Channel MOSFET
This block represents a P-channel MOSFET (or IGFET). The drain-source current Ids for negative Vds is given by:
Ids \(=0\) if \(-\mathrm{Vgs}<-\mathrm{Vth}\) (off)
Ids \(=-K^{*}\left[(\mathrm{Vgs}-\mathrm{Vth})^{*} \mathrm{Vds}-\mathrm{Vds} \wedge 2 / 2\right]^{*}\left(1+L^{*}|\mathrm{Vds}|\right)\) if \(\left.0<-\mathrm{Vds}<-\mathrm{Vgs}+\mathrm{Vth}\right]\) (linear region)
Ids \(=-(\mathrm{K} / 2)^{*}(\mathrm{Vgs}-\mathrm{Vth})^{\wedge} 2^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<-\mathrm{Vgs}+\mathrm{Vth}<-\mathrm{Vds}\) (saturated region)
where K is a constant, Vth is the Threshold voltage, L is the channel modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.

Parameters
OK Cancel Help App

\section*{Parameterization}

Select one of the following methods for block parameterization:
- Specify from a datasheet - Provide the drain-source on resistance and the corresponding drain current and gate-source voltage. The block calculates the transistor gain for the Shichman and Hodges equations from this information. This is the default method.
- Specify using equation parameters directly - Provide the transistor gain.

\section*{P-Channel MOSFET}

\section*{Drain-source on resistance, R_DS(on)}

The ratio of the drain-source voltage to the drain current for specified values of drain current and gate-source voltage. \(R_{D S}\) (on) should have a positive value. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is \(0.167 \Omega\).

\section*{Drain current, Ids, for R_DS(on)}

The drain current the block uses to calculate the value of the drain-source resistance. \(I_{D S}\) should have a negative value. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is -2.5 A .

\section*{Gate-source voltage, Vgs, for R_DS(on)}

The gate-source voltage the block uses to calculate the value of the drain-source resistance. \(V_{G S}\) should have a negative value. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is -4.5 V .

\section*{Gain K}

Positive constant gain coefficient for the Shichman and Hodges equations. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is \(2 \mathrm{~A} / \mathrm{V}^{2}\).

Gate-source threshold voltage Vth
Gate-source threshold voltage \(V_{t h}\) in the Shichman and Hodges equations. For an enhancement device, \(V_{t h}\) should be negative. For a depletion mode device, \(V_{t h}\) should be positive. The default value is -1.4 V .

\section*{Channel modulation, \(L\)}

The channel-length modulation, usually denoted by the mathematical symbol \(\lambda\). When in the saturated region, it is minus the rate of change of drain current with drain-source voltage. The effect on drain current is typically small, and the effect is neglected if calculating transistor gain \(K\) from drain-source

\section*{P-Channel MOSFET}
on-resistance, \(R_{D S}(\) on \()\). A typical value is 0.02 , but the effect can be ignored in most circuit simulations. However, in some circuits a small nonzero value may help numerical convergence. The default value is \(01 / \mathrm{V}\).

\section*{Measurement temperature}

Temperature \(T_{\mathrm{m} 1}\) at which Drain-source on resistance, R_DS(on) is measured. This parameter is only visible when you select Model temperature dependence for the Parameterization parameter on the Temperature Dependence tab. The default value is 25 C .

\section*{Ohmic Resistance Tab}
block Parameters: P-Channel MOSFET
P-Channel MOSFET
This block represents a P-channel MOSFET (or IGFET). The drain-source current Ids for negative Vds is given by:
Ids \(=0\) if \(-\mathrm{Vgs}<-\mathrm{Vth}\) (off)
Ids \(=-K^{*}\left[(\mathrm{Vgs}-\mathrm{Vth})^{*} \mathrm{Vds}-\mathrm{Vds} \wedge 2 / 2\right]^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(\left.0<-\mathrm{Vds}<-\mathrm{Vgs}+\mathrm{Vth}\right]\) (linear region)
Ids \(=-(\mathrm{K} / 2)^{*}(\mathrm{Vgs}-\mathrm{Vth})^{\wedge} 2^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<-\mathrm{Vgs}+\mathrm{Vth}<-\mathrm{Vds}\) (saturated region)
where K is a constant, V th is the Threshold voltage, L is the channel modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.
Parameters
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main & Ohmic Resistance & Junction Capacitance & Temperature Dependence & & \\
\hline \multicolumn{2}{|l|}{Source ohmic resistance:} & \multicolumn{2}{|l|}{\(1 \mathrm{e}-4\)} & Ohm & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Drain ohmic resistance:} & \multicolumn{2}{|l|}{0.01} & Ohm & \(\checkmark\) \\
\hline
\end{tabular}
OK Cancel Help Apply

\section*{P-Channel MOSFET}

\section*{Source ohmic resistance}

The transistor source resistance. The default value is \(1 \mathrm{e}-4 \Omega\). The value must be greater than or equal to 0 .

\section*{Drain ohmic resistance}

The transistor drain resistance. The default value is \(0.001 \Omega\). The value must be greater than or equal to 0 .

\section*{Junction Capacitance Tab}
```

|
P-Channel MOSFET
This block represents a P-channel MOSFET (or IGFET). The drain-source current Ids for negative Vds is given by:
Ids = 0 if -Vgs <-Vth (off)
Ids =-K*[(Vgs - Vth)*Vds - Vds^2/2]*(1+L* |Vds |) if 0<-Vds <-Vgs + Vth] (linear region)
Ids =-(K/2)*}(\textrm{Vgs}-\textrm{Vth}\mp@subsup{)}{}{\wedge}\mp@subsup{2}{}{*}(1+\mp@subsup{L}{}{*}|Vds|) if 0<-Vgs + Vth < -Vds (saturated region
where K is a constant, V th is the Threshold voltage, L is the channel modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.
Parameters

| Main | Ohmic Resistance Junction Capacitance | Temperature Dependence |
| :--- | :--- | :--- | :--- |

Parameterization:	Specify from a datasheet		
Input capacitance, Ciss:	270	pF	
Reverse transfer capacitance, Crss:	45	pF	
Charge-voltage linearity:		Gate-drain capacitance is constant	

```

\section*{Parameterization}

Select one of the following methods for capacitance parameterization:

\section*{P-Channel MOSFET}
- Specify from a datasheet - Provide parameters that the block converts to junction capacitance values. This is the default method.
- Specify using equation parameters directly - Provide junction capacitance parameters directly.

\section*{Input capacitance Ciss}

The gate-source capacitance with the drain shorted to the source. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 270 pF .

\section*{Reverse transfer capacitance Crss}

The drain-gate capacitance with the source connected to ground. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 45 pF .

\section*{Gate-source junction capacitance}

The value of the capacitance placed between the gate and the source. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 225 pF .

\section*{Gate-drain junction capacitance}

The value of the capacitance placed between the gate and the drain. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 45 pF .

\section*{Charge-voltage linearity}

Select whether gate-drain capacitance is fixed or nonlinear:
- Gate-drain capacitance is constant - The capacitance value is constant and defined according to the selected parameterization option, either directly or derived from a datasheet. This is the default method.
- Gate-drain charge function is nonlinear - The gate-drain charge relationship is defined according to the

\section*{P-Channel MOSFET}

> piecewise-nonlinear function described in "Charge Model" on page 1-401. Two additional parameters appear to let you define the gate-drain charge function.

\section*{Gate-drain oxide capacitance}

The gate-drain capacitance when the device is on and the drain-gate voltage is small. This parameter is only visible when you select Gate-drain charge function is nonlinear for the Charge-voltage linearity parameter. The default value is 200 pF .

Drain-gate voltage at which oxide capacitance becomes active The drain-gate voltage at which the drain-gate capacitance switches between off-state ( \(C_{\mathrm{GD}}\) ) and on-state ( \(C_{\mathrm{ox}}\) ) capacitance values. This parameter is only visible when you select Gate-drain charge function is nonlinear for the Charge-voltage linearity parameter. The default value is -0.5 V .

\section*{P-Channel MOSFET}

\section*{Temperature Dependence Tab}

\section*{Block Parameters: P-Channel MOSFET}

P-Channel MOSFET
This block represents a P-channel MOSFET (or IGFET). The drain-source current Ids for negative Vds is given by:
Ids \(=0\) if \(-\mathrm{Vgs}<-\mathrm{Vth}\) (off)
Ids \(=-K^{*}\left[(\mathrm{Vgs}-\mathrm{Vth})^{*} \mathrm{Vds}-\mathrm{Vds} \mathrm{s}^{\wedge} 2 / 2\right]^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(\left.0<-\mathrm{Vds}<-\mathrm{Vgs}+\mathrm{Vth}\right]\) (linear region)
Ids \(=-(\mathrm{K} / 2)^{*}(\mathrm{Vgs}-\mathrm{Vth})^{\wedge} 2^{*}\left(1+\mathrm{L}^{*}|\mathrm{Vds}|\right)\) if \(0<-\mathrm{Vgs}+\mathrm{Vth}<-\mathrm{Vds}\) (saturated region)
where K is a constant, V th is the Threshold voltage, L is the channel modulation, Vgs is the gate-source voltage and Vds is the drain-source voltage.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Main & Ohmic Resistance & Junction Capacitance & Temperature Dependence \\
\hline
\end{tabular}

Parameterization:
None - Simulate at parameter measurement temperature

\section*{Parameterization}

Select one of the following methods for temperature dependence parameterization:

\section*{P-Channel MOSFET}
- None Simulate at parameter measurement temperature - Temperature dependence is not modeled. This is the default method.
- Model temperature dependence - Model temperature-dependent effects. Provide a value for simulation temperature, \(T_{\mathrm{s}}\), a value for \(B E X\), and a value for the measurement temperature \(T_{\mathrm{m} 1}\) (using the Measurement temperature parameter on the Main tab). You also have to provide a value for \(a\) using one of two methods, depending on the value of the Parameterization parameter on the Main tab. If you parameterize the block from a datasheet, you have to provide \(R_{D S}(o n)\) at a second measurement temperature, and the block will calculate \(\alpha\) based on that. If you parameterize by specifying equation parameters, you have to provide the value for \(\alpha\) directly.

\section*{Drain-source on resistance, R_DS(on), at second measurement temperature}

The ratio of the drain-source voltage to the drain current for specified values of drain current and gate-source voltage at second measurement temperature. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. It must be quoted for the same working point (drain current and gate-source voltage) as the Drain-source on resistance, R_DS(on) parameter on the Main tab. The default value is \(0.25 \Omega\).

\section*{Second measurement temperature}

Second temperature \(T_{\mathrm{m} 2}\) at which Drain-source on resistance, R_DS(on), at second measurement temperature is measured. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. The default value is 125 C .

\section*{Gate threshold voltage temperature coefficient, dVth/dT}

The rate of change of gate threshold voltage with temperature. This parameter is only visible when you select Specify using

\section*{P-Channel MOSFET}
equation parameters directly for the Parameterization parameter on the Main tab. The default value is \(2 \mathrm{mV} / \mathrm{K}\).

\section*{Mobility temperature exponent, BEX}

Mobility temperature coefficient value. You can use the default value for most MOSFETs. See the "Basic Assumptions and Limitations" on page \(1-404\) section for additional considerations. The default value is -1.5 .

\section*{Device simulation temperature}

Temperature \(T_{\mathrm{s}}\) at which the device is simulated. The default value is 25 C .

\section*{Ports The block has the following ports:}

G
Electrical conserving port associated with the transistor gate terminal.

D
Electrical conserving port associated with the transistor drain terminal.

S
Electrical conserving port associated with the transistor source terminal.

\section*{References \\ [1] H. Shichman and D. A. Hodges. "Modeling and simulation of insulated-gate field-effect transistor switching circuits." IEEE J. Solid State Circuits, SC-3, 1968.}

See Also N-Channel MOSFET

\section*{Purpose}

Model polynomial current-controlled current source

\section*{Library}

Description


SPICE-Compatible Components/Sources
The PCCCS (Polynomial Current-Controlled Current Source) block represents a current source whose output current value is a polynomial function of the current through the input ports. The following equations describe the current through the source as a function of time:
- If you specify an \(n\)-element vector of polynomial coefficients for the Polynomial coefficients parameter:
\[
I_{\text {out }}=p(0)+p(1) * I_{\text {in }}+\ldots+p(n-1) * I_{i n}^{n-1}+p(n) * I_{\text {in }}^{n}
\]
- If you specify a scalar coefficient for the Polynomial coefficients parameter:
\[
I_{\text {out }}=p^{*} I_{\text {in }}
\]
where:
- \(I_{i n}\) is the current through the input ports.
- \(p\) is the Polynomial coefficients parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the output ports of the device and has a conductance GMIN:
- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is \(1 \mathrm{e}-12\).
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

\section*{Dialog \\ Box and Parameters}


\section*{Polynomial coefficients}

The polynomial coefficients that relate the input current to the output current, as described in the preceding section. The default value is [ \(\left.\begin{array}{lll}0 & 1\end{array}\right]\).

\section*{Ports}

The block has the following ports:
\(+\)
Positive electrical input voltage.

Negative electrical input voltage.
N+
Positive electrical output voltage.

\section*{N - \\ Negative electrical output voltage.}

See Also , PCCCS2PCCVS, PVCCS, and PVCVS

\section*{PCCCS2}

\section*{Purpose}

Library
Description


Model polynomial current-controlled current source with two controlling inputs

SPICE-Compatible Components/Sources
The PCCCS2 (Two-Input Polynomial Current-Controlled Current Source) block represents a current source whose output current value is a polynomial function of the currents through the pairs of controlling input ports. The following equations describes the current through the source as a function of time:
\[
I_{\text {out }}=p_{1}+p_{2} * I_{\text {in } 1}+p_{3} * I_{\text {in } 2}+p_{4} * I_{\text {in } 1}^{2}+p_{5} I_{\text {in } 1} * I_{\text {in } 2}+p_{6} * I_{\text {in } 2}^{2}+\ldots
\]
where:
- \(I_{\text {in1 }}\) is the current across the first pair of input ports.
- \(I_{\text {in2 }}\) is the current across the second pair of input ports.
- \(p\) is the Polynomial coefficients parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the output ports of the device and has a conductance GMIN:
- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is \(1 \mathrm{e}-12\).
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

\section*{Dialog Box and Parameters}

\section*{Ports \\ The block has the following ports:}
\(+1\)
Positive electrical input voltage of first controlling source.
\(-1\)
Negative electrical input voltage of first controlling source.
\(+2\)
Positive electrical input voltage of second controlling source.
-2
Negative electrical input voltage of second controlling source.
N+
Positive electrical output voltage.
N -
Negative electrical output voltage.
See Also PCCCS, PCCVS2, PVCCS2, and PVCVS2

\section*{PCCVS}

Purpose
Model polynomial current-controlled voltage source
Library
Description


SPICE-Compatible Components/Sources
The PCCVS (Polynomial Current-Controlled Voltage Source) block represents a voltage source whose output voltage value is a polynomial function of the current through the input ports. The following equations describe the voltage across the source as a function of time:
- If you specify an \(n\)-element vector of polynomial coefficients for the Polynomial coefficients parameter:
\[
V_{\text {out }}=p(0)+p(1) * I_{\text {in }}+\ldots+p(n-1) * I_{\text {in }}^{n-1}+p(n) * I_{\text {in }}^{n}
\]
- If you specify a scalar coefficient for the Polynomial coefficients parameter:
\[
V_{\text {out }}=p * I_{\text {in }}
\]
where:
- \(I_{i n}\) is the current through the input ports.
- \(p\) is the Polynomial coefficients parameter value.

\section*{Dialog Box and Parameters}

Block Parameters: PCCYS

\section*{X}
-PCCVS
The Polynomial Current-Controlled Voltage Source (PCCVS) block generates a voltage waveform, Vout, by evaluating a polynomial function for a single controlling input current, \(\operatorname{Iin}\). Iin is the time-dependent current flowing through the input terminals.

If you specify a vector of polynomial coefficients, \(p\), in ascending order, the output is:
Wout \(=p(0)+p(1)^{*} \operatorname{Iin}+\ldots+p(n-1)^{*} \operatorname{Iin} \wedge(n-1)+p(n)^{*} \operatorname{Ii} \cap^{\wedge} n\)
If you specify a scalar coefficient, \(p\), the block creates a linearly dependent output voltage.

Vout \(=p^{*}\) Iin
Parameters
Polynomial coefficients:
[01]

OK
Cancel

 Apply

\section*{Polynomial coefficients}

The polynomial coefficients that relate the input current to the output voltage, as described in the preceding section. The default value is [ \(\left.\begin{array}{lll}0 & 1\end{array}\right]\).

Ports The block has the following ports:
\(+\)
Positive electrical input voltage.

Negative electrical input voltage.
N+
Positive electrical output voltage.
N -
Negative electrical output voltage.

\section*{PCCVS}

See Also PCCCS, PCCVS2, PVCCS, and PVCVS

\section*{Purpose}

\section*{Library}

Description


Model polynomial current-controlled voltage source with two controlling inputs

SPICE-Compatible Components/Sources
The PCCVS2 (Two-Input Polynomial Current-Controlled Voltage Source) block represents a voltage source whose output voltage value is a polynomial function of the currents through the pairs of controlling input ports. The following equations describes the voltage across the source as a function of time:
\[
V_{\text {out }}=p_{1}+p_{2} * I_{\text {in1 } 1}+p_{3} * I_{\text {in } 2}+p_{4} * I_{\text {in } 1}^{2}+p_{5} I_{\text {in } 1} * I_{\text {in } 2}+p_{6} * I_{\text {in } 2}^{2}+\ldots
\]
where:
- \(I_{\text {in1 }}\) is the current across the first pair of input ports.
- \(I_{i n 2}\) is the current across the second pair of input ports.
- \(p\) is the Polynomial coefficients parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the output ports of the device and has a conductance GMIN:
- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is \(1 \mathrm{e}-12\).
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

\section*{PCCVS2}

\section*{Dialog Box and Parameters}

\section*{Ports}

The block has the following ports:

\section*{\(+1\)}

Positive electrical input voltage of first controlling source.
-1
Negative electrical input voltage of first controlling source.
+2
Positive electrical input voltage of second controlling source.
-2
Negative electrical input voltage of second controlling source.
N+
Positive electrical output voltage.
N-
Negative electrical output voltage.
See Also PCCCS2, PCCVS, PVCCS2, and PVCVS2

\section*{Purpose}

\section*{Library}

Description

Model photodiode as parallel controlled current source and exponential diode

Sensors
The Photodiode block represents a photodiode as a controlled current source and an exponential diode connected in parallel. The controlled current source produces a current \(I_{p}\) that is proportional to the radiant flux density:
\[
I_{\mathrm{p}}=\text { DeviceSensitivity } \cdot \text { RadiantFluxDensity }
\]
where:
- DeviceSensitivity is the ratio of the current produced to the incident radiant flux density.
- If you select Specify measured current for given flux density for the Sensitivity parameterization parameter, the block calculates this variable by converting the Measured current parameter value to units of amps and dividing it by the Flux density parameter values.
- If you select Specify current per unit flux density for the Sensitivity parameterization parameter, this variable is defined by the Device sensitivity parameter value.
- RadiantFluxDensity is the incident radiant flux density.

To model dynamic response time, use the Junction capacitance parameter to include the diode junction capacitance in the model.

The exponential diode model provides the following relationship between the diode current \(I\) and the diode voltage \(V\) :
\[
I=I S \cdot\left(e^{\frac{q V}{N k T_{m 1}}}-1\right)
\]

\section*{Photodiode}
where:
- \(q\) is the elementary charge on an electron (1.602176e-19 Coulombs).
- \(k\) is the Boltzmann constant (1.3806503e-23 J/K).
- \(N\) is the emission coefficient.
- IS is the saturation current, which is equal to the Dark current parameter value.
- \(T_{\mathrm{m} 1}\) is the temperature at which the diode parameters are specified, as defined by the Measurement temperature parameter value.

When \(\left(q V / N k T_{\mathrm{m} 1}\right)>80\), the block replaces \(e^{\frac{q V}{N k T_{m 1}}}\) with \(\left(q V / N k T_{\mathrm{m} 1}-\right.\) 79) \(\mathrm{e}^{80}\), which matches the gradient of the diode current at ( \(q V / N k T_{\mathrm{m} 1}\) ) \(=80\) and extrapolates linearly. When \(\left(q V / N k T_{\mathrm{m} 1}\right)<-79\), the block replaces \(e^{\frac{q V}{N k T_{m 1}}}\) with \(\left(q V / N k T_{\mathrm{m} 1}+80\right) \mathrm{e}^{-79}\), which also matches the gradient and extrapolates linearly. Typical electrical circuits do not reach these extreme values. The block provides this linear extrapolation to help convergence when solving for the constraints during simulation.

When you select Use dark current and \(N\) for the Diode parameterization parameter, you specify the diode in terms of the Dark current and Emission coefficient N parameters. When you select Use dark current plus a forward bias I-V data point for the Diode parameterization parameter, you specify the Dark current parameter and a voltage and current measurement point on the diode I-V curve. The block calculates \(N\) from these values as follows:
\[
N=V_{F} /\left(V_{t} \log \left(I_{F} / I S+1\right)\right)
\]
where:
- \(V_{F}\) is the Forward voltage VF parameter value.
- \(V_{\mathrm{t}}=k T_{\mathrm{m} 1} / q\).
- \(I_{F}\) is the Current IF at forward voltage VF parameter value.

The exponential diode model provides the option to include a junction capacitance:
- When you select Fixed or zero junction capacitance for the Junction capacitance parameter, the capacitance is fixed.
- When you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter, the block uses the coefficients \(C J O, V J, M\), and \(F C\) to calculate a junction capacitance that depends on the junction voltage.
- When you select Use C-V curve data points for the Junction capacitance parameter, the block uses three capacitance values on the C-V capacitance curve to estimate \(C J O, V J\), and \(M\) and uses these values with the specified value of \(F C\) to calculate a junction capacitance that depends on the junction voltage. The block calculates \(C J O, V J\), and \(M\) as follows:
- \(C J 0=C_{1}\left(\left(V_{R 2}-V_{R 1}\right) /\left(V_{R 2}-V_{R 1}\left(C_{2} / C_{1}\right)^{-1 / M}\right)\right)^{M}\)
- \(V J=-\left(-V_{R 2}\left(C_{1} / C_{2}\right)^{-1 / M}+V_{R 1}\right) /\left(1-\left(C_{1} / C_{2}\right)^{-1 / M}\right)\)
- \(M=\log \left(C_{3} / C_{2}\right) / \log \left(V_{R 2} / V_{R 3}\right)\)
where:
- \(V_{R 1}, V_{R 2}\), and \(V_{R 3}\) are the values in the Reverse bias voltages [VR1 VR2 VR3] vector.
- \(C_{1}, C_{2}\), and \(C_{3}\) are the values in the Corresponding capacitances [C1 C2 C3] vector.
It is not possible to estimate \(F C\) reliably from tabulated data, so you must specify its value using the Capacitance coefficient FC parameter. In the absence of suitable data for this parameter, use a typical value of 0.5 .
The reverse bias voltages (defined as positive values) should satisfy \(V_{R 3}>V_{R 2}>V_{R 1}\). This means that the capacitances should satisfy

\section*{Photodiode}
\(C_{1}>C_{2}>C_{3}\) as reverse bias widens the depletion region and hence reduces capacitance. Violating these inequalities results in an error. Voltages \(V_{R 2}\) and \(V_{R 3}\) should be well away from the Junction potential \(V J\). Voltage \(V_{R 1}\) should be less than the Junction potential \(V J\), with a typical value for \(V_{R 1}\) being 0.1 V .

The voltage-dependent junction is defined in terms of the capacitor charge storage \(Q_{j}\) as:
- For \(V<F C \cdot V J\) :
\[
Q_{j}=C J 0 \cdot(V J /(M-1)) \cdot\left((1-V / V J)^{1-M}-1\right)
\]
- For \(V \geq F C \cdot V J\) :
\[
Q_{j}=C J 0 \cdot F_{1}+\left(C J 0 / F_{2}\right) \cdot\left(F_{3} \cdot(V-F C \cdot V J)+0.5(M / V J) \cdot\left(V^{2}-(F C \cdot V J)^{2}\right)\right)
\]
where:
- \(\left.F_{1}=(V J /(1-M)) \cdot\left(1-(1-F C)^{1-M}\right)\right)\)
- \(\left.\left.F_{2}=(1-F C)^{1+M}\right)\right)\)
- \(F_{3}=1-F C \cdot(1+M)\)

These equations are the same as used in [2], except that the temperature dependence of \(V J\) and \(F C\) is not modeled. This model does not include the diffusion capacitance term that affects performance for high frequency switching applications.

The Photodiode block contains several options for modeling the dependence of the diode current-voltage relationship on the temperature during simulation. Temperature dependence of the junction capacitance is not modeled, this being a much smaller effect. For details, see the Diode reference page.

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.

Use the thermal port to simulate the effects of generated heat and device temperature. For more information on using thermal ports and on the Thermal port tab parameters, see "Simulating Thermal Effects in Semiconductors".

\section*{Basic Assumptions and Limitations}

The Photodiode block has the following limitations:
- When you select Use dark current plus a forward bias I-V curve data point for the Diode parameterization parameter, choose a voltage near the diode turn-on voltage. Typically this will be in the range from 0.05 to 1 Volt. Using a value outside of this region may lead to a poor estimate for \(N\).
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

\section*{Photodiode}

\section*{Dialog Main Tab \\ Box and Parameters}

Block Parameters: Photodiode
Photodiode
This block represents a photodiode. Structurally it consists of a controlled current source and an exponential diode connected in parallel. The controlled current source produces a current Ip that is proportional to the Radiant flux density presented at the physical signal port D:

Ip = Device sensitivity * Radiant flux density
In order to model dynamic response time, the diode junction capacitance can be set to a suitable value.

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Main & Ohmic Resistance & Junction Capacitance & Temperature Dependence \\
\hline Sensitivity parameterization: & Specify measured current for given flux density & \\
Measured current: & 25 & UA \\
Flux density: & 5 & \(\mathrm{~W} / \mathrm{m}^{\wedge} 2\) \\
Diode parameterization: & Use dark current plus a forward bias I-V data point \\
Current IF at forward voltage VF: & 0.1 & A \\
Forward voltage VF: & 1.3 & V \\
Dark current: & \(5 \mathrm{e}-9\) & A \\
Measurement temperature: & 25 & C \\
\hline
\end{tabular}

\section*{Sensitivity parameterization}

Select one of the following methods for sensitivity parameterization:
- Specify measured current for given flux density Specify the measured current and the corresponding flux density. This is the default method.
- Specify current per unit flux density - Specify the device sensitivity directly.

\section*{Measured current}

The current the block uses to calculate the device sensitivity. This parameter is only visible when you select Specify measured current for given flux density for the Sensitivity parameterization parameter. The default value is \(25 \mu \mathrm{~A}\).

\section*{Flux density}

The flux density the block uses to calculate the device sensitivity. This parameter is only visible when you select Specify measured current for given flux density for the Sensitivity parameterization parameter. The default value is \(5 \mathrm{~W} / \mathrm{m}^{2}\).

\section*{Device sensitivity}

The current per unit flux density. This parameter is only visible when you select Specify current per unit flux density for the Sensitivity parameterization parameter. The default value is \(5 \mathrm{e}-06 \mathrm{~m}^{2 *} \mathrm{~A} / \mathrm{W}\).

\section*{Diode parameterization}

Select one of the following methods for diode model parameterization:
- Use dark current plus a forward bias I-V data point - Specify the dark current and a point on the diode I-V curve. This is the default method.
- Use dark current and N - Specify dark current and emission coefficient.

\section*{Photodiode}

\section*{Current IF at forward voltage VF}

The current at the forward-biased point on the diode I-V curve that the block uses to calculate \(I S\) and \(N\). This parameter is only visible when you select Use dark current plus a forward bias I-V data point for the Diode parameterization parameter. The default value is 0.1 A .

\section*{Forward voltage VF}

The corresponding voltage at the forward-biased point on the diode I-V curve that the block uses to calculate \(I S\) and \(N\). This parameter is only visible when you select and Use dark current plus a forward bias I-V data point for the Diode parameterization parameter. The default value is 1.3 V .

\section*{Dark current}

The current through the diode when it is not exposed to light. The default value is \(5 \mathrm{e}-9 \mathrm{~A}\).

\section*{Measurement temperature}

The temperature at which the I-V curve or dark current was measured. The default value is \(25^{\circ} \mathrm{C}\).

\section*{Emission coefficient N}

The diode emission coefficient or ideality factor. This parameter is only visible when you select Use dark current and N for the Diode parameterization parameter. The default value is 3 .

\section*{Photodiode}

\section*{Ohmic Resistance Tab}

\section*{Block Parameters: Photodiode}

Photodiode
This block represents a photodiode. Structurally it consists of a controlled current source and an exponential diode connected in parallel. The controlled current source produces a current Ip that is proportional to the Radiant flux density presented at the physical signal port D:

Ip = Device sensitivity * Radiant flux density
In order to model dynamic response time, the diode junction capacitance can be set to a suitable value.

\section*{Parameters}
\begin{tabular}{|l|c|c|c|}
\hline Main & Ohmic Resistance & Junction Capacitance & Temperature Dependence \\
\hline Ohmic resistance, RS: & 0.1 & Ohm \\
\hline
\end{tabular}


Ohmic resistance RS
The series diode connection resistance. The default value is \(0.1 \Omega\).

\section*{Photodiode}

\section*{Junction Capacitance Tab}

\section*{Block Parameters: Photodiode}

\section*{Photodiode}

This block represents a photodiode. Structurally it consists of a controlled current source and an exponential diode connected in parallel. The controlled current source produces a current Ip that is proportional to the Radiant flux density presented at the physical signal port D:

Ip = Device sensitivity * Radiant flux density
In order to model dynamic response time, the diode junction capacitance can be set to a suitable value.

\section*{Parameters}
Main \(\quad\) Ohmic Resistance Junction Capacitance Temperature Dependence

Junction capacitance:
Zero-bias junction capacitance, CJ0:

Fixed or zero junction capacitance

60
pF

\section*{Junction capacitance}

Select one of the following options for modeling the junction capacitance:
- Fixed or zero junction capacitance - Model the junction capacitance as a fixed value.
- Use C-V curve data points - Specify measured data at three points on the diode C-V curve.
- Use parameters CJO, VJ, M \& FC - Specify zero-bias junction capacitance, junction potential, grading coefficient, and forward-bias depletion capacitance coefficient.

\section*{Zero-bias junction capacitance CJ0}

The value of the capacitance placed in parallel with the exponential diode term. This parameter is only visible when you select Fixed or zero junction capacitance or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 60 pF . When you select Fixed or zero junction capacitance for the Junction capacitance parameter, a value of zero omits junction capacitance.

\section*{Reverse bias voltages [VR1 VR2 VR3]}

A vector of the reverse bias voltage values at the three points on the diode C-V curve that the block uses to calculate CJO, VJ, and \(M\). This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [ \(\left.\begin{array}{llll}0.1 & 10 & 100\end{array}\right] \mathrm{V}\).

\section*{Corresponding capacitances [C1 C2 C3]}

A vector of the capacitance values at the three points on the diode C-V curve that the block uses to calculate \(C J O, V J\), and \(M\). This parameter is only visible when you select Use C-V curve data points for the Junction capacitance parameter. The default value is [ \(\left.\begin{array}{ccc}45 & 30 & 6\end{array}\right] \mathrm{pF}\).

\section*{Junction potential VJ}

The junction potential. This parameter is only visible when you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 1 V .

\section*{Photodiode}

\section*{Grading coefficient M}

The grading coefficient. This parameter is only visible when you select Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

\section*{Capacitance coefficient FC}

Fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Use C-V curve data points or Use parameters CJO, VJ, M \& FC for the Junction capacitance parameter. The default value is 0.5 .

\section*{Photodiode}

\section*{Temperature Dependence Tab}

\section*{Block Parameters: Photodiode}

Photodiode
This block represents a photodiode. Structurally it consists of a controlled current source and an exponential diode connected in parallel. The controlled current source produces a current Ip that is proportional to the Radiant flux density presented at the physical signal port D:

Ip = Device sensitivity * Radiant flux density
In order to model dynamic response time, the diode junction capacitance can be set to a suitable value.
Parameters
\begin{tabular}{|l|l|l|l|}
\hline Main & Ohmic Resistance & Junction Capacitance & Temperature Dependence \\
\hline
\end{tabular}

Parameterization:
None - Simulate at parameter measurement temperature

\section*{Parameterization}

Select one of the following methods for temperature dependence parameterization:

\section*{Photodiode}
- None Simulate at parameter measurement temperature - Temperature dependence is not modeled, or the model is simulated at the measurement temperature \(T_{\mathrm{m} 1}\) (as specified by the Measurement temperature parameter on the Main tab). This is the default method.
- Use an I-V data point at second measurement temperature T2 - If you select this option, you specify a second measurement temperature \(T_{\mathrm{m} 2}\), and the current and voltage values at this temperature. The model uses these values, along with the parameter values at the first measurement temperature \(T_{\mathrm{m} 1}\), to calculate the energy gap value.
- Specify saturation current at second measurement temperature T2 - If you select this option, you specify a second measurement temperature \(T_{\mathrm{m} 2}\), and saturation current value at this temperature. The model uses these values, along with the parameter values at the first measurement temperature \(T_{\mathrm{m} 1}\), to calculate the energy gap value.
- Specify the energy gap EG - Specify the energy gap value directly.

\section*{Current I1 at second measurement temperature}

Specify the diode current \(I 1\) value when the voltage is V1 at the second measurement temperature. This parameter is only visible when you select Use an I-V data point at second measurement temperature T2 for the Parameterization parameter. The default value is 0.07 A .

\section*{Voltage V1 at second measurement temperature}

Specify the diode voltage V1 value when the current is I1 at the second measurement temperature. This parameter is only visible when you select Use an I-V data point at second measurement temperature T2 for the Parameterization parameter. The default value is 1.3 V .

Saturation current, IS, at second measurement temperature Specify the saturation current \(I S\) value at the second measurement temperature. This parameter is only visible when you select Specify saturation current at second measurement temperature T2 for the Parameterization parameter. The default value is \(2.5 e-7 \mathrm{~A}\).

\section*{Second measurement temperature}

Specify the value for the second measurement temperature. This parameter is only visible when you select either Use an I-V data point at second measurement temperature T2 or Specify saturation current at second measurement temperature T2 for the Parameterization parameter. The default value is 125 C .

\section*{Energy gap parameterization}

This parameter is only visible when you select Specify the energy gap EG for the Parameterization parameter. It lets you select a value for the energy gap from a list of predetermined options, or specify a custom value:
- Use nominal value for silicon (EG=1.11eV) - This is the default.
- Use nominal value for 4 H -SiC silicon carbide ( \(\mathrm{EG}=3.23 \mathrm{eV}\) )
- Use nominal value for 6H-SiC silicon carbide (EG=3.00eV)
- Use nominal value for germanium (EG=0.67eV)
- Use nominal value for gallium arsenide (EG=1.43eV)
- Use nominal value for selenium (EG=1.74eV)
- Use nominal value for Schottky barrier diodes ( \(\mathrm{EG}=0.69 \mathrm{eV}\) )
- Specify a custom value - If you select this option, the Energy gap, EG parameter appears in the dialog box, to let you specify a custom value for \(E G\).

\section*{Photodiode}

\section*{Energy gap, EG}

Specify a custom value for the energy gap, \(E G\). This parameter is only visible when you select Specify a custom value for the Energy gap parameterization parameter. The default value is 1.11 eV .

Saturation current temperature exponent parameterization
Select one of the following options to specify the saturation current temperature exponent value:
- Use nominal value for pn-junction diode (XTI=3) This is the default.
- Use nominal value for Schottky barrier diode (XTI=2)
- Specify a custom value - If you select this option, the Saturation current temperature exponent, XTI parameter appears in the dialog box, to let you specify a custom value for XTI.

\section*{Saturation current temperature exponent, XTI}

Specify a custom value for the saturation current temperature exponent, XTI. This parameter is only visible when you select Specify a custom value for the Saturation current temperature exponent parameterization parameter. The default value is 3 .

\section*{Device simulation temperature}

Specify the value for the temperature \(T_{\mathrm{s}}\), at which the device is to be simulated. The default value is 25 C .

\section*{Ports}

The block has the following ports:

D
Physical port representing incident flux.
\(+\)
Electrical conserving port associated with the diode positive terminal.

Electrical conserving port associated with the diode negative terminal.

\author{
References [1] MH. Ahmed and P.J. Spreadbury. Analogue and digital electronics for engineers. 2nd Edition, Cambridge University Press, 1984. \\ [2] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.
}

See Also Diode, Light-Emitting Diode, Optocoupler

\section*{Piezo Linear Motor}

Purpose \(\begin{aligned} & \text { Model force-speed characteristics of linear piezoelectric traveling wave } \\ & \text { motor }\end{aligned}\) Translational Actuators

\section*{Resonant Circuit Model for Powered Motor}

When the motor is active, Piezo Linear Motor block represents the motor characteristics using the following equivalent circuit model.


In the preceding figure:
- The AC voltage source represents the block's physical signal input of frequency \(f\) and magnitude \(v\).
- The resistor \(R\) provides the main electrical and mechanical damping term.
- The inductor \(L\) represents the rotor vibration inertia.
- The capacitor \(C\) represents the piezo crystal stiffness.
- The capacitor \(C_{p}\) represents the phase capacitance. This is the electrical capacitance associated with each of the two motor phases.
- The force constant \(k_{f}\) relates the RMS current \(i\) to the resulting mechanical force.
- The quadratic mechanical damping term, \(\lambda \dot{x}^{2}\), shapes the force-speed curve predominantly at speeds close to maximum RPM. \(\dot{x}\) is the linear speed.
- The term \(M \dot{x}\) represents the plunger inertia.

\section*{Piezo Linear Motor}

At model initialization, the block calculates the model parameters \(R, L\), \(C, k_{t}\) and \(\lambda\) to ensure that the steady-state force-speed curve matches the values for the following user-specified parameters:
- Rated force
- Rated speed
- No-load maximum speed
- Maximum (stall) force

These parameter values are defined for the Rated RMS voltage and Motor natural frequency (or rated frequency) parameter values.
The quadratic mechanical damping term produces a quadratic force-speed curve. Piezoelectric motors force-speed curves can typically be approximated more accurately using a quadratic function than a linear one because the force-speed gradient becomes steeper as the motor approaches the maximum speed.
If the plunger mass \(M\) is not specified on the datasheet, you can select a value that provides a good match to the quoted response time. The response time is often defined as the time for the rotor to reach maximum speed when starting from rest, under no-load conditions.
The quality factor that you specify using the Resonance quality factor parameter relates to the equivalent circuit model parameters as follows:
\[
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
\]

This term is not usually provided on a datasheet. You can calculate its value by matching the sensitivity of force to driving frequency.
To reverse the motor direction of operation, make the physical signal input \(v\) negative.

\section*{Piezo Linear Motor}

\section*{Basic \\ Assumptions and Limitations}

The block has the following limitations:
- When the motor is powered, the model is valid only between zero and maximum speed, for the following reasons:
- Datasheets do not provide information for operation outside of normal range.
- Piezoelectric motors are not designed to operate in the powered braking and generating regions.
The block behaves as follows outside the valid operating region:
- Below zero speed, the model maintains a constant force with a zero speed value. The zero speed value is the Maximum (stall) force parameter value if the RMS input voltage equals the Rated RMS voltage parameter value, and the frequency input equals the Motor natural frequency parameter value.
- Above maximum speed, the model produces the negative force predicted by the equivalent circuit model, but limits the absolute value of the force to the zero-speed maximum force.
- The force-speed characteristics are most representative when operating the model close to the rated voltage and resonant frequency.

\section*{Piezo Linear Motor}

\section*{Dialog Box and Parameters}

\section*{Electrical Force Tab}


\section*{Motor natural frequency}

Frequency at which the piezoelectric crystal naturally resonates.
For most applications, set the input signal at port \(f\) to this frequency. To slow down the motor, for example in a closed-loop speed control, use a frequency slightly less than the motor natural frequency. The default value is 92 kHz .

\section*{Rated RMS voltage}

Voltage at which the motor is designed to operate. The default value is 5.7 V .

\section*{Piezo Linear Motor}

\section*{Rated force}

Force the motor delivers at the rated RMS voltage. The default value is 0.1 N .

\section*{Rated speed}

Motor speed when the motor drives a load at the rated force. The default value is \(50 \mathrm{~mm} / \mathrm{s}\).

\section*{No-load maximum speed}

Motor speed when driving no load and powered at the rated voltage and driving frequency. The default value is \(150 \mathrm{~mm} / \mathrm{s}\).

\section*{Maximum (stall) force}

Maximum force the motor delivers when actively driving a load and powered at the rated voltage and frequency. The default value is 0.15 N .

Note The Holding force parameter value, the load force the motor holds when stationary, may be greater than the Maximum (stall) force parameter value.

\section*{Resonance quality factor}

Quality factor \(Q\) that specifies how force varies as a function of driving frequency. Increasing the quality factor results in a much more rapid decrease in force as driving frequency is moved away from the natural frequency. The default value is 100.

\section*{Capacitance per phase}

Electrical capacitance associated with each of the two motor phases. The default value is 5 nF .

\section*{Piezo Linear Motor}

\section*{Mechanical Tab}


\section*{Plunger mass}

Mass of the moving part of the motor. The default value is 0.3 g .

\section*{Initial rotor speed}

Rotor speed at the start of the simulation. The default value is 0 \(\mathrm{mm} / \mathrm{s}\).

\section*{Piezo Linear Motor}

\section*{Motor-Off Friction Tab}


\section*{Holding force}

The sum of the Coulomb and the static frictions. It must be greater than or equal to the Coulomb friction force parameter value. The default value is 0.3 N .

\section*{Coulomb friction force}

The friction that opposes rotation with a constant force at any velocity. The default value is 0.15 N .

\section*{Piezo Linear Motor}

\section*{Viscous friction coefficient}

Proportionality coefficient between the friction force and the relative velocity. The parameter value must be greater than or equal to zero. The default value is \(1 \mathrm{e}-05 \mathrm{~s} * \mathrm{~N} / \mathrm{mm}\).

\section*{Transition approximation coefficient}

The parameter sets the coefficient value that is used to approximate the transition between the static and the Coulomb frictions. For detailed information about the coefficient, \(c_{v}\), see the Simscape Translational Friction block reference page. The default value is \(0.1 \mathrm{~s} / \mathrm{mm}\).

\section*{Linear region velocity threshold}

The parameter sets the small vicinity near zero velocity, within which friction force is considered to be linearly proportional to the relative velocity. MathWorks recommends that you use values between \(1 \mathrm{e}-6\) and \(1 \mathrm{e}-4 \mathrm{~mm} / \mathrm{s}\). The default value is \(0.1 \mathrm{~mm} / \mathrm{s}\).

\section*{Ports}

The block has the following ports:
f
Physical signal input value specifying the motor driving frequency in Hz .
v
Physical signal input magnitude specifying the RMS supply voltage, and sign specifying the direction of rotation. If \(v\) is positive, then a positive force acts from port C to port R .
i
Physical signal output value that is the RMS phase current.
vel
Physical signal output value that is the linear speed of the rotor.
C
Mechanical translational conserving port.
R
Mechanical translational conserving port.

\section*{Piezo Rotary Motor}

\section*{Purpose}

\section*{Library}

Description


Model torque-speed characteristics of rotary piezoelectric traveling wave motor

Rotational Actuators
The Piezo Rotary Motor block represents the torque-speed characteristics of a piezoelectric traveling wave motor. The block represents the torque-speed relationship of the motor at a level that is suitable for system-level modeling. To simulate the motor, the block uses the following models:
- "Inertia and Friction Model for Unpowered Motor" on page 1-451
- "Resonant Circuit Model for Powered Motor" on page 1-451

\section*{Inertia and Friction Model for Unpowered Motor}

The motor is unpowered when the physical signal input \(v\) is zero. This corresponds to applying zero RMS volts to the motor. In this scenario, the block models the motor using the following elements:
- An inertia whose value is the Rotor inertia parameter value.
- A friction whose characteristics are determined by the parameter values in the Motor-Off Friction tab.

The block uses a Simscape Rotational Friction block to model the friction component. For detailed information about the friction model, see the Rotational Friction block reference page.

\section*{Resonant Circuit Model for Powered Motor}

When the motor is active, Piezo Rotary Motor block represents the motor characteristics using the following equivalent circuit model.

\section*{Piezo Rotary Motor}


In the preceding figure:
- The AC voltage source represents the block's physical signal input of frequency \(f\) and magnitude \(v\).
- The resistor \(R\) provides the main electrical and mechanical damping term.
- The inductor \(L\) represents the rotor vibration inertia.
- The capacitor \(C\) represents the piezo crystal stiffness.
- The capacitor \(C_{p}\) represents the phase capacitance. This is the electrical capacitance associated with each of the two motor phases.
- The torque constant \(k_{t}\) relates the RMS current \(i\) to the resulting mechanical torque.
- The quadratic mechanical damping term, \(\lambda \omega_{m}{ }^{2}\), shapes the torque-speed curve predominantly at speeds close to maximum RPM. \(\omega_{m}\) is the mechanical rotational speed.
- The term \(J \dot{\omega}_{m}\) represents the rotor inertia.

\section*{Piezo Rotary Motor}

At model initialization, the block calculates the model parameters \(R, L\), \(C, k_{t}\) and \(\lambda\) to ensure that the steady-state torque-speed curve matches the values of the following user-specified parameter values:

\section*{- Rated torque}
- Rated rotational speed
- No-load maximum rotational speed
- Maximum torque

These parameter values are defined for the Rated RMS voltage and Motor natural frequency (or rated frequency) parameter values.

The quadratic mechanical damping term produces a quadratic torque-speed curve. Piezoelectric motors torque-speed curves can typically be approximated more accurately using a quadratic function than a linear one because the torque-speed gradient becomes steeper as the motor approaches the maximum speed.

If the rotor inertia \(J\) is not specified on the datasheet, you can select a value that provides a good match to the quoted response time. The response time is often defined as the time for the rotor to reach maximum speed when starting from rest, under no-load conditions.

The quality factor that you specify using the Resonance quality factor parameter relates to the equivalent circuit model parameters as follows:
\[
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
\]

This term is not usually provided on a datasheet. You can calculate its value by matching the sensitivity of torque to driving frequency.
To reverse the motor direction of operation, make the physical signal input \(v\) negative.

\section*{Piezo Rotary Motor}
Basic
Assumptions
and
Limitations

The block has the following limitations:
- When the motor is powered, the model is valid only between zero and maximum speed, for the following reasons:
- Datasheets do not provide information for operation outside of normal range.
- Piezoelectric motors are not designed to operate in the powered braking and generating regions.
The block behaves as follows outside the valid operating region:
- Below zero speed, the model maintains a constant torque that is the zero rpm torque value. The zero rpm torque value is the Maximum torque parameter value if the RMS input voltage equals the Rated RMS voltage parameter value, and the frequency input equals the Motor natural frequency parameter value.
- Above maximum speed, the model produces the negative torque predicted by the equivalent circuit model, but limits the absolute value of the torque to the zero-speed maximum torque.
- The torque-speed characteristics are most representative when operating the model close to the rated voltage and resonant frequency.

\section*{Piezo Rotary Motor}

\section*{Dialog Box and Parameters}

\section*{Electrical Torque Tab}


\section*{Motor natural frequency}

Frequency at which the piezoelectric crystal naturally resonates. For most applications, set the input signal at port \(f\) to this frequency. To slow down the motor, for example in a closed-loop speed control, use a frequency slightly less than the motor natural frequency. The default value is 40 kHz .

\section*{Rated RMS voltage}

Voltage at which the motor is designed to operate. The default value is 130 V .

\section*{Piezo Rotary Motor}

\section*{Rated torque}

Torque the motor delivers at the rated RMS voltage. The default value is \(0.5 \mathrm{~N}^{*} \mathrm{~m}\).

\section*{Rated rotational speed}

Motor speed when the motor drives a load at the rated torque. The default value is 100 rpm .

\section*{No-load maximum rotational speed}

Motor rotational speed when driving no load and powered at the rated voltage and driving frequency. The default value is 160 rpm .

\section*{Maximum torque}

Maximum torque that the motor delivers when actively driving a load and powered at the rated voltage and frequency. The default value is \(1 \mathrm{~N} * \mathrm{~m}\).

Note The Holding torque parameter value, the load torque the motor holds when stationary, may be greater than the Maximum torque parameter value.

\section*{Resonance quality factor}

Quality factor \(Q\) that specifies how torque varies as a function of driving frequency. Increasing the quality factor results in a much more rapid decrease in torque as driving frequency is moved away from the natural frequency. The default value is 100.

\section*{Capacitance per phase}

Electrical capacitance associated with each of the two motor phases. The default value is 5 nF .

\section*{Piezo Rotary Motor}

\section*{Mechanical Tab}


\section*{Rotor inertia}

Rotor resistance to change in motor motion. The default value is \(200 \mathrm{~g} * \mathrm{~cm}^{2}\).

\section*{Initial rotor speed}

Rotor speed at the start of the simulation. The default value is 0 rpm .

\section*{Piezo Rotary Motor}

\section*{Motor-Off Friction Tab}


\section*{Holding torque}

The sum of the Coulomb and the static frictions. It must be greater than or equal to the Coulomb friction torque parameter value. The default value is \(1.5 \mathrm{~N} * \mathrm{~m}\).

\section*{Coulomb friction torque}

The friction that opposes rotation with a constant torque at any velocity. The default value is \(1 \mathrm{~N}^{*} \mathrm{~m}\).

\section*{Piezo Rotary Motor}

\section*{Viscous friction coefficient}

Proportionality coefficient between the friction torque and the relative angular velocity. The parameter value must be greater than or equal to zero. The default value is \(0.001 \mathrm{~N} * \mathrm{~m} /\left(\mathrm{rad}^{*} \mathrm{~s}\right)\).

\section*{Transition approximation coefficient}

The parameter sets the coefficient value that is used to approximate the transition between the static and the Coulomb frictions. For detailed information about the coefficient, \(c_{v}\), see the Simscape Rotational Friction block reference. The default value is \(10 \mathrm{~s} / \mathrm{rad}\).

\section*{Linear region velocity threshold}

The parameter sets the small vicinity near zero velocity, within which friction torque is considered to be linearly proportional to the relative velocity. MathWorks recommends that you use values in the range between \(1 \mathrm{e}-5\) and \(1 \mathrm{e}-3 \mathrm{rad} / \mathrm{s}\). The default value is \(1 \mathrm{e}-04 \mathrm{rad} / \mathrm{s}\).

\section*{Ports \\ The block has the following ports:}
f
Physical signal input value specifying the motor driving frequency in Hz .
v
Physical signal input magnitude specifying the RMS supply voltage, and sign specifying the direction of rotation. If \(v\) is positive, then a positive torque acts from port C to port R .
i
Physical signal output value that is the RMS phase current.
wm
Physical signal output value that is the rotational speed of the rotor.

C
Mechanical rotational conserving port.

\section*{Piezo Rotary Motor}

R
Mechanical rotational conserving port.

\section*{Purpose}

\section*{Library}

Description


Model electrical and force characteristics of piezoelectric stacked actuator

\section*{Translational Actuators}

The Piezo Stack block represents the electrical and force characteristics of a piezoelectric stacked actuator using the following equations:
\[
\begin{aligned}
& S=s^{E} T+d^{\prime} E \\
& D=d T+\varepsilon^{T} E
\end{aligned}
\]
where
- \(S\) is the strain tensor.
- \(T\) is the stress tensor.
- \(E\) is the electric field vector.
- \(D\) is the electric displacement vector.
- \(s^{E}\) is the elastic compliance matrix when subjected to a constant electric field.
- \(d\) is the piezoelectric constant matrix.
- \(\varepsilon^{T}\) is the permittivity measured at a constant stress.

Note The block models one-dimensional lumped parameter behavior, so \(S, T, E\) and \(D\) are all scalar values.

You can specify the block parameters that determine static force using either datasheet parameters or material properties, as determined by the value of the Parameterization parameter on the Static Force tab of the block dialog box.
The Dynamic Forces tab of the block dialog box lets you include optional effective mass and mechanical damping effects.

\section*{Piezo Stack}
- If you specify a nonzero value for the Effective mass parameter or a finite value for the Resonant frequency at constant field parameter, the block attaches a lumped mass to the mechanical \(R\) port. When you specify a finite resonant frequency, the block calculates the effective mass to achieve the correct resonant frequency.
- If you specify a nonzero value for the Damping parameter or a finite value for the Mechanical quality factor parameter, the block adds a damping term across the R and C mechanical ports. When you specify a mechanical quality factor, \(Q_{m}\), the block calculates the damping from this parameter value as \(\sqrt{M k} / Q_{m}\), where \(k\) is the short-circuit device stiffness, or equivalently the stiffness at constant field.

A positive voltage across the electrical + to - ports creates a positive displacement acting from the mechanical C to R ports.
Basic \(\quad\) The model does not include hysteresis effects.
Assumptions
and
Limitations

\section*{Piezo Stack}

\section*{Dialog Box and Parameters}

Static Force Tab


\section*{Parameterization}

Select one of the following methods for static force parameterization:
- Specify from a datasheet - Provide datasheet parameters that the block converts to static force values. This is the default method.
- Specify material properties - Provide material properties that the block converts to static force values.

\section*{Stack area}

Cross-sectional area of the stack. The default value is \(100 \mathrm{~mm}^{2}\).

\section*{Piezo Stack}

\section*{Stack length}

Stack length when no load and no electrical potential are applied. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 36 mm .

\section*{No-load displacement at V0 volts}

Unconstrained displacement of the stack when a voltage of V0 volts is applied. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 0.038 mm .

\section*{Blocking force at V0 volts}

Force the stack produces when a voltage of V0 volts is applied and the stack is physically prevented from expanding. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is \(3.8 \mathrm{e}+03 \mathrm{~N}\).

\section*{Test voltage V0}

Voltage used to determine the no-load displacement and blocking force. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 120 V .

\section*{Capacitance}

This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 13 uF .

\section*{Piezo layer thickness}

Thickness of each layer in the piezo stack. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is 0.3 mm .

\section*{Number of layers}

Number of layers in the piezo stack. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is 50 .

\section*{Piezoelectric charge constant}

Mechanical strain per unit electric field applied. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is \(5 e-10\) \(\mathrm{m} / \mathrm{V}\).

\section*{Dielectric constant}

Permittivity or dielectric displacement per unit electric field measured at constant stress. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is \(2.124 \mathrm{e}-08\) F/m.

\section*{Elastic compliance}

Strain produced in a piezoelectric material per unit of stress applied. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is \(1.9 \mathrm{e}-11 \mathrm{~m}^{2} / \mathrm{N}\).

\section*{Piezo Stack}

\section*{Dynamic Forces Tab}


\section*{Parameterization}

Select one of the following methods for dynamic force parameterization:
- Specify from a datasheet - Provide datasheet parameters that the block converts to dynamic force values. This is the default method.
- Specify material properties - Provide material properties that the block converts to dynamic force values.

\section*{Resonant frequency at constant field}

Frequency at which the actuator naturally resonates if mechanically perturbed with the electrical ports shorted. This
parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is Inf kHz .

\section*{Mechanical quality factor}

Factor that affects the damping across the R and C mechanical ports. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is Inf.

\section*{Damping}

Translational damping term. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is \(0 \mathrm{~N} /(\mathrm{m} / \mathrm{s})\).

\section*{Effective mass}

Mass that approximates the distributed dynamics of the device and causes the stack to resonate at the correct frequency when attached to the mechanical \(R\) port. This mass is usually about one third of the actual stack mass. This parameter is only visible when you select Specify material properties for the Parameterization parameter. The default value is 0 g .

\section*{Piezo Stack}

\section*{Initial Conditions Tab}


\section*{Initial stack deflection}

Stack deflection at time zero. If you have an external Ideal Translational Motion Sensor block attached across the Piezo Stack block, you must use the same initial deflection parameter for both blocks. The default value is 0 mm .

\section*{Initial voltage}

Stack voltage at time zero. The default value is 0 V .
Ports
The block has the following ports:
\(+\)
Positive electrical port.

Negative electrical port.
C
Mechanical translational conserving port.
R
Mechanical translational conserving port.

\section*{PNP Bipolar Transistor}

Purpose
Library
Description

Model PNP bipolar transistor using enhanced Ebers-Moll equations
Semiconductor Devices
The PNP Bipolar Transistor block uses a variant of the Ebers-Moll equations to represent an PNP bipolar transistor. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. The PNP Bipolar Transistor block provides the following enhancements to that model:
- Early voltage effect
- Optional base, collector, and emitter resistances.
- Optional fixed base-emitter and base-collector capacitances.

The collector and base currents are [1]:
\[
\begin{aligned}
& I_{C}=-I S\left[\left(e^{-q V_{B E} /\left(k T_{m 1}\right)}-e^{-q V_{B C} /\left(k T_{m 1}\right)}\right)\left(1+\frac{V_{B C}}{V_{A}}\right)-\frac{1}{\beta_{R}}\left(e^{-q V_{B C} /\left(k T_{m 1}\right)}-1\right)\right] \\
& I_{B}=-I S\left[\frac{1}{\beta_{F}}\left(e^{-q V_{B E} /\left(k T_{m 1}\right)}-1\right)+\frac{1}{\beta_{R}}\left(e^{-q V_{B C} /\left(k T_{m 1}\right)}-1\right)\right]
\end{aligned}
\]

Where:
- \(I_{B}\) and \(I_{C}\) are base and collector currents, defined as positive into the device.
- IS is the saturation current.
- \(V_{B E}\) is the base-emitter voltage and \(V_{B C}\) is the base-collector voltage.
- \(\beta_{F}\) is the ideal maximum current gain BF
- \(\beta_{R}\) is the ideal maximum current gain BR
- \(V_{A}\) is the forward Early voltage VAF
- \(q\) is the elementary charge on an electron (1.602176e-19 Coulombs).

\section*{PNP Bipolar Transistor}
- \(k\) is the Boltzmann constant ( \(1.3806503 \mathrm{e}-23 \mathrm{~J} / \mathrm{K}\) ).
- \(T_{\mathrm{m} 1}\) is the transistor temperature, as defined by the Measurement temperature parameter value.

You can specify the transistor behavior using datasheet parameters that the block uses to calculate the parameters for these equations, or you can specify the equation parameters directly.

If \(-q V_{\mathrm{BC}} /\left(k T_{\mathrm{m} 1}\right)>40\) or \(-q V_{\mathrm{BE}} /\left(k T_{\mathrm{m} 1}\right)>40\), the corresponding exponential terms in the equations are replaced with \(\left(-q V_{\mathrm{BC}} /\left(k T_{\mathrm{m} 1}\right)\right.\) \(-39) e^{40}\) and \(\left(-q V_{\mathrm{BE}} /\left(k T_{\mathrm{m} 1}\right)-39\right) e^{40}\), respectively. This helps prevent numerical issues associated with the steep gradient of the exponential function \(e^{\mathrm{x}}\) at large values of \(x\). Similarly, if \(-q V_{\mathrm{BC}} /\left(k T_{\mathrm{m} 1}\right)<-39\) or \(-q V_{\mathrm{BE}} /\left(k T_{\mathrm{m} 1}\right)<-39\) then the corresponding exponential terms in the equations are replaced with \(\left(-q V_{\mathrm{BC}} /\left(k T_{\mathrm{m} 1}\right)+40\right) e^{-39}\) and \(\left(-q V_{\mathrm{BE}} /\left(k T_{\mathrm{m} 1}\right)\right.\) \(+40) e^{-39}\), respectively.

Optionally, you can specify parasitic fixed capacitances across the base-emitter and base-collector junctions. You also have the option to specify base, collector, and emitter connection resistances.

\section*{Modeling Temperature Dependence}

The default behavior is that dependence on temperature is not modeled, and the device is simulated at the temperature for which you provide block parameters. You can optionally include modeling the dependence of the transistor static behavior on temperature during simulation. Temperature dependence of the junction capacitances is not modeled, this being a much smaller effect.

When including temperature dependence, the transistor defining equations remain the same. The measurement temperature value, \(T_{\mathrm{m} 1}\), is replaced with the simulation temperature, \(T_{\mathrm{s}}\). The saturation current, \(I S\), and the forward and reverse gains ( \(\beta_{F}\) and \(\beta_{R}\) ) become a function of temperature according to the following equations:
\[
I S_{T s}=I S_{T m 1} \cdot\left(T_{s} / T_{m 1}\right)^{X T I} \cdot \exp \left(-\frac{E G}{k T_{s}}\left(1-T_{s} / T_{m 1}\right)\right)
\]

\section*{PNP Bipolar Transistor}
\[
\begin{aligned}
& \beta_{F s}=\beta_{F m 1}\left(\frac{T_{s}}{T_{m 1}}\right)^{X T B} \\
& \beta_{R s}=\beta_{R m 1}\left(\frac{T_{s}}{T_{m 1}}\right)^{X T B}
\end{aligned}
\]
where:
- \(T_{\mathrm{m} 1}\) is the temperature at which the transistor parameters are specified, as defined by the Measurement temperature parameter value.
- \(T_{\mathrm{s}}\) is the simulation temperature.
- \(I S_{\mathrm{Tm} 1}\) is the saturation current at the measurement temperature.
- \(I S_{T \mathrm{Ts}}\) is the saturation current at the simulation temperature. This is the saturation current value used in the bipolar transistor equations when temperature dependence is modeled.
- \(\beta_{\mathrm{Fm} 1}\) and \(\beta_{\mathrm{Rm} 1}\) are the forward and reverse gains at the measurement temperature.
- \(\beta_{\mathrm{Fs}}\) and \(\beta_{\mathrm{Rs}}\) are the forward and reverse gains at the simulation temperature. These are the values used in the bipolar transistor equations when temperature dependence is modeled.
- \(E G\) is the energy gap for the semiconductor type measured in Joules. The value for silicon is usually taken to be 1.11 eV , where 1 eV is \(1.602 \mathrm{e}-19\) Joules.
- XTI is the saturation current temperature exponent.
- XTB is the forward and reverse gain temperature coefficient.
- \(k\) is the Boltzmann constant (1.3806503e-23 J/K).

Appropriate values for XTI and \(E G\) depend on the type of transistor and the semiconductor material used. In practice, the values of XTI, \(E G\), and \(X T B\) need tuning to model the exact behavior of a particular

\section*{PNP Bipolar Transistor}

\section*{Basic Assumptions and Limitations}
transistor. Some manufacturers quote these tuned values in a SPICE Netlist, and you can read off the appropriate values. Otherwise you can determine values for \(X T I, E G\), and \(X T B\) by using a datasheet-defined data at a higher temperature \(T_{\mathrm{m} 2}\). The block provides a datasheet parameterization option for this.
You can also tune the values of XTI, EG, and XTB yourself, to match lab data for your particular device. You can use Simulink Design Optimization software to help tune the values.

\section*{Thermal Port}

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices \(>\) Show thermal port. This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.

Use the thermal port to simulate the effects of generated heat and device temperature. For more information on using thermal ports and on the Thermal port tab parameters, see "Simulating Thermal Effects in Semiconductors".

The PNP Bipolar Transistor model has the following limitations:
- The block does not account for temperature-dependent effects on the junction capacitances.
- You may need to use nonzero ohmic resistance and junction capacitance values to prevent numerical simulation issues, but the simulation may run faster with these values set to zero.

\section*{PNP Bipolar Transistor}

\section*{Dialog \\ Box and Parameters}

Main Tab

Block Parameters: PNP Bipolar Transistor

\section*{PNP Bipolar Transistor}

This block represents a PNP transistor modeled using a variant of the Ebers-Moll equations. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. In addition, this block adds the Early voltage effect, and gives the option to include base, emitter and emitter resistances plus fixed baseemitter and base-collector capacitances. For full details of the equations, consult the documentation. The equation parameters can either be specified directly, or are derived from standard datasheet parameters.

Parameters
\begin{tabular}{|c|c|c|c|c|c|}
\hline Main & Ohmic Resistance & Capacitance & Temperature Dependence & & \\
\hline \multicolumn{2}{|l|}{Parameterization:} & \multicolumn{2}{|l|}{Specify from a datasheet} & & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Forward current transfer ratio, h_fe:} & \multicolumn{2}{|l|}{100} & & \\
\hline \multicolumn{2}{|l|}{Output admittance, h_oe:} & \multicolumn{2}{|l|}{\(5 \mathrm{e}-5\)} & 1/Ohm & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Collector current at which h parameters are defined:} & \multicolumn{2}{|l|}{-1} & mA & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Collector-emitter voltage at which h -parameters are defined:} & \multicolumn{2}{|l|}{-5} & V & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Voltage Vbe:} & \multicolumn{2}{|l|}{-0.55} & V & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Current Ib for voltage Vbe:} & \multicolumn{2}{|l|}{-0.5} & mA & \(\checkmark\) \\
\hline \multicolumn{2}{|l|}{Reverse current transfer ratio, BR:} & \multicolumn{2}{|l|}{1} & & \\
\hline \multicolumn{2}{|l|}{Measurement temperature:} & \multicolumn{2}{|l|}{25} & C & \(\checkmark\) \\
\hline
\end{tabular}

OK Cancel Help Apply

\section*{PNP Bipolar Transistor}

\section*{Parameterization}

Select one of the following methods for block parameterization:
- Specify from a datasheet - Provide parameters that the block converts to equations that describe the transistor. The block calculates the forward Early voltage VAF as Ic /h_oe, where Ic is the Collector current at which h-parameters are defined parameter value, and \(h \_o e\) is the Output admittance \(\mathbf{h}\) _oe parameter value [2]. The block sets \(B F\) to the small-signal Forward current transfer ratio \(\mathbf{h}_{-}\)fe value. The block calculates the saturation current \(I S\) from the specified Voltage Vbe value and the corresponding Current Ib for voltage Vbe value when \(I c\) is zero. This is the default method.
- Specify using equation parameters directly - Provide equation parameters \(I S, B F\), and \(V A F\).

\section*{Forward current transfer ratio h_fe}

Small-signal current gain. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is 100 .

\section*{Output admittance h_oe}

Derivative of the collector current with respect to the collector-emitter voltage for a fixed base current. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is \(5 e-51 / \Omega\).

\section*{Collector current at which h-parameters are defined}

The h-parameters vary with operating point, and are defined for this value of the collector current. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is -1 mA .
Collector-emitter voltage at which h-parameters are defined The h-parameters vary with operating point, and are defined for this value of the collector-emitter voltage. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is -5 V .

\section*{PNP Bipolar Transistor}

\section*{Voltage Vbe}

Base-emitter voltage when the base current is \(I b\). The [ Vbe \(I b\) ] data pair must be quoted for when the transistor is in the normal active region, that is, not in the saturated region. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is -0.55 V .

\section*{Current Ib for voltage Vbe}

Base current when the base-emitter voltage is Vbe. The [ Vbe Ib ] data pair must be quoted for when the transistor is in the normal active region, that is, not in the saturated region. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter. The default value is -0.5 mA .

\section*{Forward current transfer ratio BF}

Ideal maximum forward current gain. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 100 .

\section*{Saturation current IS}

Transistor saturation current. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is \(1 \mathrm{e}-14 \mathrm{~A}\).

\section*{Forward Early voltage VAF}

In the standard Ebers-Moll equations, the gradient of the Ic versus Vce curve is zero in the normal active region. The additional forward Early voltage term increases this gradient. The intercept on the \(V c e\)-axis is equal to \(-V A F\) when the linear region is extrapolated. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter. The default value is 200 V.

\section*{Reverse current transfer ratio BR}

Ideal maximum reverse current gain. This value is often not quoted in manufacturer datasheets because it is not significant when the transistor is biased to operate in the normal active

\section*{PNP Bipolar Transistor}
region. When the value is not known and the transistor is not to be operated on the inverse region, use the default value of 1 .

\section*{Measurement temperature}

Temperature \(T_{\mathrm{m} 1}\) at which Vbe and \(I b\), or \(I S\), are measured. The default value is 25 C .

\section*{PNP Bipolar Transistor}

\section*{Ohmic Resistance Tab}

\section*{Block Parameters: PNP Bipolar Transistor}

\section*{PNP Bipolar Transistor}

This block represents a PNP transistor modeled using a variant of the Ebers-Moll equations. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. In addition, this block adds the Early voltage effect, and gives the option to include base, emitter and emitter resistances plus fixed baseemitter and base-collector capacitances. For full details of the equations, consult the documentation. The equation parameters can either be specified directly, or are derived from standard datasheet parameters.

\section*{Parameters}
\begin{tabular}{|l|c|c|c|}
\hline Main & Ohmic Resistance & Capacitance & Temperature Dependence \\
\hline Collector resistance, RC: & 0.01 & \\
Emitter resistance, RE: & \(1 \mathrm{e}-4\) & Ohm \\
Zero bias base resistance, RB: & 1 & Ohm \\
& & Ohm \\
\hline
\end{tabular}

\section*{Collector resistance RC}

Resistance at the collector. The default value is \(0.01 \Omega\).

\section*{PNP Bipolar Transistor}

\section*{Emitter resistance RE}

Resistance at the emitter. The default value is \(1 \mathrm{e}-4 \Omega\).

\section*{Zero bias base resistance RB}

Resistance at the base at zero bias. The default value is \(1 \Omega\).

\section*{PNP Bipolar Transistor}

\section*{Capacitance Tab}
```


Block Parameters: PNP Bipolar Transistor

```
```

PNP Bipolar Transistor
This block represents a PNP transistor modeled using a variant of the Ebers-Moll equations. The Ebers-Moll equations are based on two exponential diodes plus two current-controlled current sources. In addition, this block adds the Early voltage effect, and gives the option to include base, emitter and emitter resistances plus fixed baseemitter and base-collector capacitances. For full details of the equations, consult the documentation. The equation parameters can either be specified directly, or are derived from standard datasheet parameters.

```

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Main & Ohmic Resistance & Capacitance & Temperature Dependence \\
\\
\hline \begin{tabular}{l} 
Base-collector junction \\
capacitance: \\
Base-emitter junction \\
capacitance: \\
Total forward transit time:
\end{tabular} & 5 & pF \\
Total reverse transit time: & 5 & pF \\
\hline
\end{tabular}

\section*{PNP Bipolar Transistor}

\section*{Base-collector junction capacitance}

Parasitic capacitance across the base-collector junction. The default value is 5 pF .

\section*{Base-emitter junction capacitance}

Parasitic capacitance across the base-emitter junction. The default value is 5 pF .

\section*{Total forward transit time}

Represents the mean time for the minority carriers to cross the base region from the emitter to the collector, and is often denoted by the parameter TF [1]. The default value is \(0 \mu \mathrm{~s}\).

\section*{Total reverse transit time}

Represents the mean time for the minority carriers to cross the base region from the collector to the emitter, and is often denoted by the parameter TR [1]. The default value is \(0 \mu \mathrm{~s}\).

\section*{PNP Bipolar Transistor}

\section*{Temperature Dependence Tab}


\section*{PNP Bipolar Transistor}

\section*{Parameterization}

Select one of the following methods for temperature dependence parameterization:
- None Simulate at parameter measurement temperature - Temperature dependence is not modeled, or the model is simulated at the measurement temperature \(T_{\mathrm{m} 1}\) (as specified by the Measurement temperature parameter on the Main tab). This is the default method.
- Model temperature dependence - Provide a value for simulation temperature, to model temperature-dependent effects. You also have to provide a set of additional parameters depending on the block parameterization method. If you parameterize the block from a datasheet, you have to provide values for a second [ Vbe Ib ] data pair and \(h \_f e\) at second measurement temperature. If you parameterize by directly specifying equation parameters, you have to provide the values for XTI, EG, and XTB.

\section*{Forward current transfer ratio, \(h \_f e\), at second measurement temperature}

Small-signal current gain at second measurement temperature. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. It must be quoted at the same collector-emitter voltage and collector current as for the Forward current transfer ratio h_fe parameter on the Main tab. The default value is 125 .

\section*{Voltage Vbe at second measurement temperature}

Base-emitter voltage when the base current is \(I b\) and the temperature is set to the second measurement temperature. The [Vbe Ib] data pair must be quoted for when the transistor is in the normal active region, that is, not in the saturated region. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. The default value is -0.45 V .

\section*{PNP Bipolar Transistor}

Current Ib for voltage Vbe at second measurement temperature Base current when the base-emitter voltage is Vbe and the temperature is set to the second measurement temperature. The [ Vbe Ib ] data pair must be quoted for when the transistor is in the normal active region, that is, not in the saturated region. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. The default value is -0.5 mA .

\section*{Second measurement temperature}

Second temperature \(T_{\mathrm{m} 2}\) at which \(h \_f e, V b e\), and \(I b\) are measured. This parameter is only visible when you select Specify from a datasheet for the Parameterization parameter on the Main tab. The default value is 125 C .

\section*{Current gain temperature coefficient, XTB}

Current gain temperature coefficient value. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter on the Main tab. The default value is 0 .

\section*{Energy gap, EG}

Energy gap value. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter on the Main tab. The default value is 1.11 eV .

\section*{Saturation current temperature exponent, XTI}

Saturation current temperature coefficient value. This parameter is only visible when you select Specify using equation parameters directly for the Parameterization parameter on the Main tab. The default value is 3 .

\section*{Device simulation temperature}

Temperature \(T_{\mathrm{s}}\) at which the device is simulated. The default value is 25 C .

Ports The block has the following ports:

\section*{PNP Bipolar Transistor}

B
Electrical conserving port associated with the transistor base terminal.

C
Electrical conserving port associated with the transistor collector terminal.

E
Electrical conserving port associated with the transistor emitter terminal.

Examples
See the PNP Bipolar Transistor Characteristics example.
References \(\quad\) [1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling
with SPICE. 2nd Edition, McGraw-Hill, 1993.
[2] H. Ahmed and P.J. Spreadbury. Analogue and digital electronics for engineers. 2nd Edition, Cambridge University Press, 1984.

See Also Diode, NPN Bipolar Transistor

\section*{Positive Supply Rail}

\section*{Purpose Model ideal positive supply rail}

\section*{Library}

Sources
Description The Positive Supply Rail block represents an ideal positive supply rail. Use this block instead of the Simscape DC Voltage Source block to \(\stackrel{\text { V }}{+}\) define the output voltage relative to the Simscape Electrical Reference block that must appear in each model.

Note Do not attach more than one Positive Supply Rail block to any connected line.

\section*{Dialog}

Box and Parameters
\begin{tabular}{|l|l|l|}
\hline Block Parameters: Positive Supply Rail \\
\hline Positive Supply Rail \\
This block represents an ideal positive supply rail. It can be used in place of the Foundation Library DC \\
Voltage Source. The output voltage is defined relative to the Electrical Reference block. Use the Constant \\
voltage parameter to specify the output voltage value. \\
Do not attach more than one Positive Supply Rail block to any connected line. & \\
\hline Parameters \\
Constant voltage: & 1 & \\
\hline
\end{tabular}

\section*{Constant voltage}

The voltage at the output port relative to the Electrical Reference block ground port. The default value is 1 V .

\section*{Positive Supply Rail}

\author{
Ports The block has the following ports: \\ Positive electrical voltage. \\ See Also Simscape DC Voltage Source, Negative Supply Rail
}

\section*{Potentiometer}

Purpose
Library
Description


Model rotary or linear-travel potentiometer controlled by physical signal

\section*{Passive Devices}

The Potentiometer block represents a rotary or linear-travel potentiometer, with the wiper position controlled by the input physical signal.
If the potentiometer resistance changes linearly based on wiper position, then the resistance between the wiper position and port L is:
\[
R_{W L}=\frac{R_{0}}{x_{\max }-x_{\min }}\left(x-x_{\min }\right)
\]
where
- \(R_{W L}\) is the resistance between the wiper position and port L .
- \(R_{0}\) is the total resistance between ports L and R .
- \(x\) is the wiper position.
- \(x_{\text {min }}\) is the value of the wiper position when the wiper is at port L .
- \(x_{\max }\) is the value of the wiper position when the wiper is at port \(R\).

If you specify LOG for the potentiometer resistance Taper parameter, then the resistance between the wiper position and port L is:
\[
R_{W L}= \begin{cases}A\left(e^{\lambda\left(x-x_{\min }\right)}-1\right) & \text { if resistance gradient is higher at } \mathrm{R} \\ R_{0}-A\left(e^{\lambda\left(x_{\max }-x\right)}-1\right) & \text { if resistance gradient is higher at } \mathrm{L}\end{cases}
\]
where \(A\) and \(\lambda\) are chosen such that \(R_{W L}\) at \(x_{\max }\) is \(R_{0}\), and \(R_{W L}\) at \(x=\) \(\left(x_{\max }+x_{\min }\right) / 2\) is equal to \(R_{a v}\), the resistance when the wiper is centered.

\section*{Potentiometer}

> Note Potentiometers widely described as LOG or logarithmic taper are, in fact, exponential taper. That is, the gradient of the resistance between wiper and left-hand port increases as the resistance increases. The Potentiometer block implements this behavior.

For both linear and logarithmic tapers, the resistance between the wiper position and port \(R\) is:
\[
R_{W R}=R_{0}-R_{W L}
\]
where
- \(R_{W R}\) is the resistance between the wiper position and port R .
- \(R_{0}\) is the total resistance between ports L and R .
- \(R_{W L}\) is the resistance between the wiper position and port L .



\section*{Total resistance}

The resistance between port L and port R when port W is open-circuit. The default value is \(1000 \Omega\).

\section*{Potentiometer}

\section*{Residual resistance}

The lower limit placed on the resistance between the wiper and the two end ports. It must be greater than zero. A typical value is \(5 \mathrm{e}-3\) times the total resistance. The default value is \(1 \Omega\).

\section*{Resistance when centered}

This parameter is available only if you select LOG for the Taper parameter. If you select Higher at R for the Resistance gradient parameter, then Resistance when centered is the resistance between port L and port W when the wiper is centered. Otherwise, if you select Higher at R for the Resistance gradient parameter, then Resistance when centered is the resistance between port R and port W when the wiper is centered. Because the resistance taper is exponential in shape, the value of the Resistance when centered parameter must be less than half of the Total resistance parameter value. The default value is \(200 \Omega\).

\section*{PS input for wiper at \(L\)}

The value of the input physical signal at port x that corresponds to the wiper being located at port L. The default value is 0 .

\section*{PS input for wiper at \(R\)}

The value of the input physical signal at port x that corresponds to the wiper being located at port \(R\). The default value is 1 .

\section*{Taper}

Specifies the potentiometer resistance taper behavior: LIN (linear) or LOG (logarithmic). The default value is LIN.

\section*{Resistance gradient}

Specifies whether the potentiometer resistance varies more rapidly at the left or the right end: Higher at L or Higher at R. This parameter is available only if you select LOG for the Taper parameter. The default value is Higher at R.

Ports The block has the following ports:

\section*{Potentiometer}

L
Electrical port representing the left pin.
R
Electrical port representing the right pin.
W
Electrical port representing the wiper pin.
x
Physical signal input port controlling the wiper position.

\author{
See Also \\ Simscape Variable Resistor
}

\section*{Power Sensor}

Purpose

\section*{Library}

Description


Measure instantaneous or cycle-average power

\section*{Sensors}

The Power Sensor block calculates the power taken by the load connected across the + and - terminals under the assumption that only the load is connected to the + terminal. Refer to the block icon for the arrangement of internal current and voltage sensors.

The sensor can return either instantaneous power, or power averaged over a fixed time period. Use the latter option for periodic current and voltage waveforms such as those associated with PWM control.

The following figure shows how you connect the block to measure power dissipated in a resistor.


For an alternative workflow using data logging to view component powers, see the Synchronous Buck Converter example.

\section*{Power Sensor}

\section*{Dialog Box and Parameters}

Block Parameters: Power Sensor

\section*{Power Sensor}

The block calculates the power taken by the load connected across the + and - terminals under the assumption that only the load is connected to the + terminal. Refer to the block icon for the arrangement of internal current and voltage sensors.

The sensor can return either instantaneous power, or power averaged over a fixed time period. The latter option caters for periodic current and voltage waveforms such as those associated with PWM control.

\section*{Parameters}

Measurement type:
Instantaneous power
\(\square\)

\section*{Measurement type}

Select whether you want to measure Instantaneous power or Average power over a specified period. The default value is Instantaneous power.

\section*{Averaging period}

The fixed period of time for measuring the average power. This parameter is only visible when you select Average power over a specified period for the Measurement type parameter. The default value is \(1 \mathrm{e}-4 \mathrm{~s}\).

\section*{Ports \\ The block has the following ports:}
s
Electrical conserving port connected to the positive supply rail.
\(+\)
Electrical conserving port connected to the positive terminal of the load.

Electrical conserving port connected to the negative terminal of the load.

P
Physical signal port that outputs the measured power.

\section*{Pressure Transducer}

\section*{Purpose}

\section*{Library}

Description


Model generic pressure transducer that turns pressure measurement into voltage

Sensors
The Pressure Transducer block models a generic pressure transducer that turns a pressure measurement into a voltage. The output voltage is linearly proportional to the pressure, and the block outputs zero volts if the pressure is less than zero. An input pressure equal to the Pressure range parameter value results in an output voltage equal to the Full-scale deflection parameter value. For higher pressures, the output voltage remains at this Full-scale deflection value.

You have three choices of operation mode, which let you select between vacuum, atmospheric pressure, or sealed-gauge reference pressure as the reference point for the pressure measurement.

Optionally, if you set the Dynamics parameter to Model transducer bandwidth, then the dynamics of the sensor are approximated by a first-order lag. The lag is determined by the Bandwidth parameter. If you select this option, you must also specify an initial condition for the lag by using the Initial pressure parameter.

If running your simulation with a fixed-step solver, or generating code for hardware-in-the-loop testing, MathWorks recommends that you set the Dynamics parameter to No dynamics Suitable for HIL, because this avoids the need for a small simulation time step if the sensor bandwidth is high.

\section*{Pressure Transducer}

\section*{Dialog}

Box and
Parameters

\section*{Block Parameters: Pressure Transducer}

Pressure Transducer
This block represents an absolute, gauge or sealed-gauge pressure transducer. The transducer maps the pressure at pneumatic port A to a voltage across the electrical ports p and n .

It is recommended that transducer dynamics be omitted for fixed-step simulation or HIL to avoid the need for a very small time step.

\section*{Parameters}
\begin{tabular}{ll|l|}
\hline Pressure range: & \(1 \mathrm{e}+6\) & Pa \\
Operation mode: & Absolute & \\
Full-scale deflection: & 5 & V \\
Output resistance: & 200 & Ohm \\
Dynamics: & No dynamics - Suitable for HIL & \\
\hline
\end{tabular}

\section*{Pressure range}

The maximum pressure that the sensor can measure. The default value is 1 e 6 Pa .

\section*{Operation mode}

Select one of the following options to define the reference point for the pressure measurement:

\section*{Pressure Transducer}
- Absolute - The pressure measurement is with respect to zero absolute pressure, that is, vacuum. This is the default option.
- Gauge - The pressure measurement is with respect to atmospheric pressure. Atmospheric pressure is defined by the Gas Properties block in the Simscape Foundation library.
- Sealed-Gauge - The pressure measurement is referenced to an internal sealed chamber. If you select this option, use the Reference pressure parameter to specify the reference point for pressure measurement.

\section*{Reference pressure}

The reference pressure in the internal sealed chamber. This parameter is only visible when you select Sealed-Gauge for the Operation mode parameter. The default value is 1.01325 e 5 Pa .

\section*{Full-scape deflection}

The output voltage when the measured pressure is equal to, or greater than, the Pressure range parameter value. The default value is 5 V .

\section*{Output resistance}

The output resistance of the transducer. The default value is \(200 \Omega\).

\section*{Dynamics}

Select one of the following options for modeling sensor dynamics:
- No dynamics Suitable for HIL - Do not model sensor dynamics. Use this option when running your simulation fixed step or generating code for hardware-in-the-loop testing, because this avoids the need for a small simulation time step if the sensor bandwidth is high. This is the default option.
- Model transducer bandwidth - Model sensor dynamics with a first-order lag approximation, based on the Bandwidth and the Initial pressure parameter values.

\section*{Pressure Transducer}

\section*{Bandwidth}

Determines the value of the sensor lag. This parameter is only visible when you select Model transducer bandwidth for the Dynamics parameter. The default value is 5 kHz .

\section*{Initial pressure}

Determines the initial condition for the lag. This parameter is only visible when you select Model transducer bandwidth for the Dynamics parameter. The default value is 0 Pa .

\section*{Ports \\ The block has the following ports:}

A
Pneumatic port.
\(+\)
Positive electrical port.

Negative electrical port.

Purpose
Model simple distance sensor

\section*{Library}

Sensors
Description

\section*{DZ \\ D R \\ } as shown in the following figure.

The Proximity Sensor block represents a simple proximity sensor. The sensing distance \(Z\) is defined as the distance normal to the sensor surface at which the sensor detects an object for a given radial offset \(R\),


A typical sensing distance curve is shown in the following figure.

\section*{Proximity Sensor}


The output is modeled by an electrical switch which can either be Normally Open (N.O.) or Normally Closed (N.C.) when no object is detected.

\section*{Proximity Sensor}

\section*{Dialog Box and Parameters}


\section*{Vector of radial offset distances \(\mathbf{R}\)}

Vector of distances from the sensor to the object resolved into a plane tangential to the sensor head. The default value is [ -25 \(-20-15-10-501510152025\) ] mm.

\section*{Corresponding sensing distances \(\mathbf{Z}\)}

Vector of distances from the sensor to the object resolved with respect to a normal vector at the sensor head. The default value is [ 00589.5109 .58500\(]\) mm.

\section*{Output when not detected}

Indicates whether the output is Normally Open (N.O.), meaning the output becomes closed only when the object is detected, or Normally Closed (N.C.), meaning the output becomes open

\section*{Proximity Sensor}
only when the object is detected. The default value is Normally Open (N.O.).

\section*{Closed resistance R_closed}

The resistance between the + and - ports when the output contacts are closed. The default value is \(0.01 \Omega\).

\section*{Open conductance G_open}

The conductance between the + and - ports when the output contacts are open. The default value is \(1 \mathrm{e}-081 / \Omega\).

\section*{Ports \\ The block has the following ports:}

R
Radial distance to the sensor.
Z
Perpendicular distance to the sensor.
\(+\)
Positive electrical voltage.

Negative electrical voltage.

\section*{Purpose}

Model generic linear sensor

\section*{Library}

Description


Sensors

The PS Sensor block represents a generic linear sensor. The block converts the physical signal input \(U\) into an electrical output \(Y\) across the + and - ports. The Output type parameter value determines which of the following electrical outputs the block produces:
- Output voltage
- Output current
- Output resistance
\(Y\) is related to \(U\) as \(Y=\max \left(\min \left(A * U+B, Y_{\max }\right), Y_{\min }\right)\) where \(Y_{\min }\) and \(Y_{\max }\) are minimum and maximum limits on the output, respectively.

\section*{PS Sensor}

\section*{Dialog Box and Parameters}


\section*{Output type}

Indicates whether the sensor output is a Variable voltage of \(Y\) V, a Variable current of \(Y\) A, or Variable resistor with a value of \(Y \Omega\). The default value is Variable voltage.

\section*{Sensor gain, A}

The sensitivity of the output \(Y\) with respect to the input \(U\), \(d Y / d U\). The default value is 1 .

\section*{Sensor offset, B}

The output when the input \(U\) is zero. The output does not exceed the limits \(Y_{\max }\) and \(Y_{\min }\). The default value is 0 .

\section*{Maximum output, Ymax}

The upper limit on the sensor output. The following table shows the units of this parameter, which depend on the selected value of the Output type parameter.
\begin{tabular}{l|l}
\hline Output type & Units \\
\hline Variable voltage & V \\
\hline Variable current & A \\
\hline Variable resistor & \(\Omega\) \\
\hline
\end{tabular}

The default value is 5 .

\section*{Minimum output, Ymin}

The lower limit on the sensor output. The following table shows the units of this parameter, which depend on the selected value of the Output type parameter.
\begin{tabular}{|l|l|}
\hline Output type & Units \\
\hline Variable voltage & V \\
\hline Variable current & A \\
\hline Variable resistor & \(\Omega\) \\
\hline
\end{tabular}

The default value is 0.01 .
If you select Variable resistance for the Output type parameter, the minimum resistance \(Y_{\text {min }}\) must be greater than zero.

\section*{Ports \\ The block has the following ports:}

U
Physical input signal.
\(+\)
Positive electrical voltage.

\section*{PS Sensor}

Negative electrical voltage.

\author{
See Also \\ Simscape Controlled Voltage Source, Simscape Controlled Current Source, and Simscape Variable Resistor
}

\section*{Purpose}

Model switching type positive temperature coefficient (PTC) thermistor

\section*{Library}

Description


\section*{Sensors}

The PTC Thermistor block represents a switching type PTC thermistor. This type of thermistor has a decreasing resistance with temperature increasing up to the Curie temperature. Above the Curie temperature the resistance increases very rapidly with increasing temperature, as shown in the following plot. The region to the right of the Curie temperature is called the Positive Temperature Coefficient (PTC) regime. To represent a non-switching linear PTC thermistor, use the Thermal Resistor block.


For a switching type PTC thermistor, the resistance \(R\) at temperature \(T\) is given by

\section*{PTC Thermistor}
\[
\begin{aligned}
& R= \begin{cases}R_{0} e^{\alpha_{0}\left(T-T_{0}\right)} & \text { for } T<T_{\mathrm{c}} \\
R_{1} e^{\alpha_{1}\left(T-T_{1}\right)} & \text { for } T \geq T_{\mathrm{c}}\end{cases} \\
& T_{c}=\frac{\log \left(R_{1}\right)-\log \left(R_{0}\right)+\alpha_{0} T_{0}-\alpha_{1} T_{1}}{\alpha_{0}-\alpha_{1}}
\end{aligned}
\]
where:
- \(T_{\mathrm{c}}\) is the Curie temperature.
- \(R_{0}\) is the resistance at nominal temperature \(T_{0}\).
- \(R_{1}\) is the resistance at reference temperature \(T_{1}\).
- \(T_{0}\) is the nominal temperature at which the resistance is quoted, usually room temperature. \(T_{0}\) is less than the Curie temperature \(T_{c}\).
- \(T_{1}\) is the reference temperature, equal or greater than the Curie temperature \(T_{c}\), which means that at this temperature the PTC regime is in force.
- \(a_{0}\) is the temperature coefficient at nominal temperature \(T_{0}\).
- \(\alpha_{1}\) is the temperature coefficient at reference temperature \(T_{1}\).

The following equation describes the thermal behavior of the block:
\[
Q=K_{d} t_{c} \frac{d T}{d t}
\]
where:
- \(Q\) is the net heat flow into port A.
- \(K_{d}\) is the Dissipation factor parameter value.
- \(t_{\mathrm{c}}\) is the Thermal time constant parameter value.
- \(d T / d t\) is the rate of change of the temperature.

\section*{PTC Thermistor}

\section*{Dialog Electrical Tab \\ Box and \\ Parameters}

\section*{Block Parameters: PTC Thermistor}

PTC Thermistor
This block represents a switching type PTC thermistor. The resistance \(R\) at temperature \(T\) is defined by \(\log (F\) \(\log (R 0)+\operatorname{alpha} 0^{*}(T-T 0)\) below the Curie temperature \(T c\), and by \(\log (R)=\log (R 1)+\) alpha1* \((T-T 1)\) above \(T c\) where alpha \(0<0\) and alpha1 \(>0\) are resistance temperature coefficients, [T0, R0] is a data point for \(T<T\) [ \(T 1, R 1]\) is a data point for \(T>T\).

The thermistor temperature is governed by the equation \(\mathrm{m}^{*} \mathrm{c}^{*} \mathrm{~d} T / \mathrm{dt}=\mathrm{Q}\) where Q is the net heat flow into p \(m\) is the mass and \(c\) is the lumped specific heat capacity. The thermal mass \(m^{*} \mathrm{c}\) is calculated from the Ther time constant t_c and the Dissipation factor K_d using the equation \(\mathrm{m}^{*} \mathrm{c}=\mathrm{K} \_\mathrm{d}^{*} \mathrm{t}\) _c.

Parameters

\section*{Electrical Thermal}
\begin{tabular}{llll} 
Nominal resistance R0 at T0: & 1000 & & Ohm \\
Temperature coefficient alpha0 at & -0.01 & \(1 / \mathrm{K}\) \\
T0: & & K \\
Nominal temperature T0: & 298.15 & K \\
Reference resistance R1 at T1: & \(1 \mathrm{e}+4\) & Ohm \\
\hline \begin{tabular}{l} 
Temperature coefficient alpha1 at \\
T1:
\end{tabular} & 1 & \(1 / \mathrm{K}\) \\
Reference temperature T1: & 398.15 & K \\
& &
\end{tabular}

\section*{PTC Thermistor}

Nominal resistance R0 at T0
The nominal resistance of the thermistor at the nominal temperature. Many datasheets quote the nominal resistance at \(25^{\circ} \mathrm{C}\) and list it as R25. The default value is \(1000 \Omega\).

\section*{Temperature coefficient alpha0 at T0}

The temperature coefficient at the nominal temperature. The value must be less than zero. The default value is \(-0.011 / \mathrm{K}\).

\section*{Nominal temperature T0}

The temperature at which the nominal resistance is measured. The default value is 298.15 K .

Reference resistance R 1 at T1
The reference resistance of the thermistor at the reference temperature. The default value is \(10000 \Omega\).

Temperature coefficient alpha1 at T1
The temperature coefficient at the reference temperature. The value must be greater than zero. The default value is \(11 / \mathrm{K}\).

\section*{Reference temperature T1}

The temperature at which the reference resistance is measured. This temperature must be in the PTC regime. The default value is 398.15 K .

\section*{PTC Thermistor}

\section*{Thermal Tab}

\section*{Block Parameters: PTC Thermistor}

PTC Thermistor
This block represents a switching type PTC thermistor. The resistance \(R\) at temperature \(T\) is defined by \(\log (F\) \(\log (R 0)+\) alpha \(0^{*}(T-T 0)\) below the Curie temperature \(T c\), and by \(\log (R)=\log (R 1)+\) alpha1* \((T-T 1)\) above \(T 0\) where alpha \(0<0\) and alpha1 \(>0\) are resistance temperature coefficients, [T0,R0] is a data point for \(T<T\). [ \(T 1, R 1]\) is a data point for \(T>T\).

The thermistor temperature is governed by the equation \(\mathrm{m}^{*} \mathrm{c}^{*} \mathrm{~d} \mathrm{~d} / \mathrm{dt}=\mathrm{Q}\) where Q is the net heat flow into p m is the mass and c is the lumped specific heat capacity. The thermal mass \(\mathrm{m}^{*} \mathrm{c}\) is calculated from the Ther time constant t_c and the Dissipation factor K_d using the equation \(\mathrm{m}^{*} \mathrm{c}=\mathrm{K} \_\mathrm{d}^{*} \mathrm{t}\) _c.

Parameters

\section*{Electrical Thermal}
\begin{tabular}{l|l|l|l} 
Thermal time constant: & 5 & S \\
Dissipation factor: & \(7.5 \mathrm{e}-4\) & \(\mathrm{~W} / \mathrm{K}\) \\
Initial temperature: & 298.15 & K \\
\hline
\end{tabular}

\section*{PTC Thermistor}

\section*{Thermal time constant}

The time it takes the sensor temperature to reach \(63 \%\) of the final temperature change when a step change in ambient temperature occurs. The default value is 5 s .

\section*{Dissipation factor}

The thermal power required to raise the thermistor temperature by one K . The default value is \(7.5 \mathrm{e}-4 \mathrm{~W} / \mathrm{K}\).

\section*{Initial temperature}

The temperature of the thermistor at the start of the simulation. The default value is 298.15 K .

\section*{Ports The block has the following ports:}

A
Thermal port.
\(+\)
Positive electrical port.

Negative electrical port.
See Also
Thermal Resistor
Thermistor

\section*{Pulse Current Source}

\section*{Purpose}

Model periodic square pulse current source

\section*{Library}

Description


SPICE-Compatible Components/Sources
The Pulse Current Source block represents a current source whose output current value is a periodic square pulse as a function of time and is independent of the voltage across the terminals of the source. The following equations describe the current through the source as a function of time:
\[
\begin{aligned}
& I_{\text {out }}(0)=I 1 \\
& I_{\text {out }}(T D)=I 1 \\
& I_{\text {out }}(T D+T R)=I 2 \\
& I_{\text {out }}(T D+T R+P W)=I 2 \\
& I_{\text {out }}(T D+T R+P W+T F)=I 1 \\
& I_{\text {out }}(T D+P E R)=I 1
\end{aligned}
\]
where:
- \(I 1\) is the Initial value, I1 parameter value.
- I2 is the Pulse value, I2 parameter value.
- \(T D\) is the Pulse delay time, TD parameter value.
- \(T R\) is the Pulse rise time, TR parameter value.
- \(T F\) is the Pulse fall time, TF parameter value.
- \(P W\) is the Pulse width, PW parameter value.
- \(P E R\) is the Pulse period, PER parameter value.

The block determines the values at intermediate time points by linear interpolation.

\section*{Pulse Current Source}

The specified values for \(P W\) and \(P E R\) have the following effect on the block output:
- If both \(P W\) and \(P E R\) are infinite, the block produces a step response at time TD.
- If \(P E R\) is infinite and \(P W\) is finite, the block produces a single pulse of width \(P W\) and infinite period.
- If \(P W\) is infinite and \(P E R\) is finite, the block produces a step response with pulses of width \(T R\) to a value \(I 1\) every \(P E R\) seconds.
- If \(P W>P E R\), the block produces a step response with pulses of width \(T R\) to a value \(I 1\) every \(P E R\) seconds.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the + and - ports of the device and has a conductance GMIN:
- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is \(1 \mathrm{e}-12\).
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

\section*{Pulse Current Source}

\section*{Dialog \\ Box and Parameters}
Pulse Current Source
The Pulse Current Source block maintains a pulsed current through its terminals, independent of the voltage across its terminals. The following table describes the current through the block as a function of time:
Iout( 0 ) \(=\) I1
\(\operatorname{Iout}(T D)=I 1\)
\(\operatorname{Iout}(T D+T R)=I 2\)
Iout \((T D+T R+P W)=I 2\)
\(\operatorname{Iout}(T D+T R+P W+T F)=I 1\)
\(\operatorname{Iout}(T D+P E R)=I 1\)
The block determines the values at intermediate time points by linear interpolation. TD is the delay time. TR is the rise time. TF is the fall time. PW is the pulse width.
The default values for TR, TF, PW and PER differ from SPICE. The default rise and fall times are one nanosecond ( \(1 \mathrm{e}-9\) ), and the values of TR and TF can be set to zero.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Parameters} \\
\hline Initial value, I1: & 0 & A & - \\
\hline Pulse value, 12: & 0 & A & \(\checkmark\) \\
\hline Pulse delay time, TD: & 0 & 5 & - \\
\hline Pulse rise time, TR: & 1e-09 & 5 & - \\
\hline Pulse fall time, TF: & 1e-09 & 5 & \(\checkmark\) \\
\hline Pulse width, PW: & Inf & 5 & \(\nabla\) \\
\hline Pulse period, PER: & Inf & 5 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline OK & Cancel & Help & Apply \\
\hline
\end{tabular}

\section*{Initial value, I1}

The value of the output current at time zero. The default value is 0 A .

\section*{Pulse Current Source}

Pulse value, I2
The value of the output current when the output is high. The default value is 0 A .

Pulse delay time, TD
The time at which the pulse first starts. The default value is 0 s .
Pulse rise time, TR
The time it takes the output current to rise from the Initial value, \(\mathbf{I} 1\) value to the Pulse value, \(\mathbf{I 2}\) value. The default value is \(1 \mathrm{e}-09 \mathrm{~s}\). The value must be greater than or equal to 0 .

\section*{Pulse fall time, TF}

The time it takes the output current to fall from the Pulse value, I2 value to the Initial value, I1 value. The default value is 1e-09 s . The value must be greater than or equal to 0 .

\section*{Pulse width, PW}

The time width of the output pulse. The default value is Inf s. The value must be greater than 0 .

\section*{Pulse period, PER}

The period of the output pulse. The default value is Inf s. This value means that the block produces a single pulse with an infinite period. The value must be greater than 0 .

Ports The block has the following ports:
\(+\)
Positive electrical voltage.

Negative electrical voltage.

\author{
See Also Pulse Voltage Source
}

\section*{Purpose}

Model periodic square pulse voltage source

\section*{Library}

Description


SPICE-Compatible Components/Sources
The Pulse Voltage Source block represents a voltage source whose output voltage value is a periodic square pulse as a function of time equations describe the output voltage as a function of time:
and is independent of the current through the source. The following
\[
\begin{aligned}
& V_{\text {out }}(0)=V 1 \\
& V_{\text {out }}(T D)=V 1 \\
& V_{\text {out }}(T D+T R)=V 2 \\
& V_{\text {out }}(T D+T R+P W)=V 2 \\
& V_{\text {out }}(T D+T R+P W+T F)=V 1 \\
& V_{\text {out }}(T D+P E R)=V 1
\end{aligned}
\]
where:
- \(V 1\) is the Initial value, V1 parameter value.
- V2 is the Pulse value, V2 parameter value.
- TD is the Pulse delay time, TD parameter value.
- \(T R\) is the Pulse rise time, TR parameter value.
- \(T F\) is the Pulse fall time, TF parameter value.
- \(P W\) is the Pulse width, \(\mathbf{P W}\) parameter value.
- \(P E R\) is the Pulse period, PER parameter value.

The block determines the values at intermediate time points by linear interpolation.

The specified values for \(P W\) and \(P E R\) have the following effect on the block output:

\section*{Pulse Voltage Source}
- If both \(P W\) and \(P E R\) are infinite, the block produces a step response at time \(T D\).
- If \(P E R\) is infinite and \(P W\) is finite, the block produces a single pulse of width \(P W\) and infinite period.
- If \(P W\) is infinite and \(P E R\) is finite, the block produces a step response with pulses of width \(T R\) to a value \(V 1\) every \(P E R\) seconds.
- If \(P W>P E R\), the block produces a step response with pulses of width \(T R\) to a value \(V 1\) every \(P E R\) seconds.

\section*{Pulse Voltage Source}

\section*{Dialog Box and Parameters}
```

Block Parameters: Pulse Yoltage Source
X
Pulse Voltage Source
The Pulse Voltage Source block maintains a pulsed voltage across its terminals, independent of the current through its terminals. The following table describes the voltage across the block as a function of time:
Vout $(0)=V 1$
$\operatorname{Vout}(T D)=V 1$
$\operatorname{Vout}(T D+T R)=V 2$
Vout $(T D+T R+P W)=V 2$
$\operatorname{Vout}(T D+T R+P W+T F)=V_{1}$
Vout $(T D+P E R)=V 1$
The block determines the values at intermediate time points by linear interpolation. TD is the delay time. TR is the rise time. TF is the fall time. PW is the pulse width.
The default values for TR, TF, PW and PER differ from SPICE. The default rise and fall times are one nanosecond ($1 \mathrm{e}-9$), and the values of TR and TF can be set to zero.

Parameters			
Initial value, V1:	0	V	\checkmark
Pulse value, V2:	0	V	\checkmark
Pulse delay time, TD:	0	5	∇
Pulse rise time, TR:	1e-09	s	\pm
Pulse fall time, TF:	1e-09	s	\pm
Pulse width, PW:	Inf	5	-
Pulse period, PER:	Inf	5	\checkmark

OK	Cancel	Help	Apply

```

\section*{Initial value, V1}

The value of the output voltage at time zero. The default value is 0 V .

\section*{Pulse Voltage Source}

Pulse value, V2
The value of the output voltage when the output is high. The default value is 0 V .

Pulse delay time, TD
The time at which the pulse first starts. The default value is 0 s .
Pulse rise time, TR
The time it takes the output voltage to rise from the Initial Value, I1 value to the Pulse Value, V2 value. The default value is \(1 \mathrm{e}-09 \mathrm{~s}\). The value must be greater than or equal to 0 .

\section*{Pulse fall time, TF}

The time it takes the output voltage to fall from the Pulse Value, V2 value to the Initial Value, V1 value. The default value is \(1 \mathrm{e}-09 \mathrm{~s}\). The value must be greater than or equal to 0 .

\section*{Pulse width, PW}

The time width of the output pulse. The default value is Inf s.

\section*{Pulse period, PER}

The period of the output pulse. The default value is Inf s. This value means that the block produces a single pulse with an infinite period.

Ports The block has the following ports:
\(+\)
Positive electrical voltage.

Negative electrical voltage.
See Also Pulse Current Source

\section*{Purpose}

Represent CMOS complementary output stage behaviorally

\section*{Library}

Description
Integrated Circuits
The Push-Pull Output block represents a CMOS complementary output stage behaviorally. To improve simulation speed, the block does not model all the internal individual MOSFET devices that make up the gate. You can use this block to create a representative output current-voltage relationship when defining an integrated circuit model behavior with Physical Signal blocks from the Simscape Foundation library.

You can choose between are two output current-voltage relationships:
- Linear - The block represents the output as a voltage source plus series resistance and parallel capacitance, as shown in the following figure. The value you specify for the Output resistance parameter is assigned to the series resistance, and the capacitance values are determined by matching the RC time constant to the Propagation delay parameter value.

\section*{Push-Pull Output}


The input to the Controlled Voltage Source block is limited to be between the supply rails, and it is also inverted by subtraction from the supply voltage. The inversion makes it behave like a complementary output stage, with a high gate-source voltage resulting in a low output.
- Quadratic - The output stage is modeled by the two MOSFETs that constitute the complementary pair. The MOSFET parameters are derived from the output resistance values and short-circuit currents that you specify as mask parameters. The gate input demand is lagged to approximate the Propagation delay parameter value.

\section*{Push-Pull Output}


Both Linear and Quadratic output models add an offset and scale the physical input X so that the gate voltage is given by:
\[
V g=k \cdot(\mathrm{X}+c)
\]
where
- \(k\) is the input signal scaling.
- \(c\) is the input signal offset.

The offset and scaling can be used, for example, to match logical values for X (that is, range \([0,1]\) ) to \([V-, \mathrm{V}+]\) at the output pin. For example,

\section*{Push-Pull Output}
if \(\mathrm{V}+=10 \mathrm{~V}\) and \(\mathrm{V}-=0\), then to match the signal logical values to this voltage range, set \(c=-1\) and \(k=-10\).

For both Linear and Quadratic output models, the protection diodes D1 and D2 act to limit the output voltage range. These diodes are Diode blocks from the Simscape Foundation library, that is, piecewise linear diodes defined by their forward voltage and on resistance. If the voltage across D1 rises above the forward voltage, then the diode starts to conduct, and provided that the on resistance is low, it effectively prevents the output rising above \(\mathrm{V}+\) plus the diode forward voltage drop. An equivalent behavior results if the output voltage drops too low.

The output model is very similar to that used for the logic blocks. For a plot of a typical output V-I characteristic when using the Quadratic output model, see Selecting the Output Model for Logic Blocks.
\begin{tabular}{|c|c|}
\hline Basic & The Push-Pull Output block has the following limitations: \\
\hline Assumptions and & - The block does not accurately model dynamic response. \\
\hline Limitations & - The Quadratic output model does not model any output capacitance effects. Add output capacitance externally to the block if required. \\
\hline
\end{tabular}

\section*{Push-Pull Output}

\section*{Dialog Input Scaling Tab \\ Box and \\ Parameters}

\section*{Block Parameters: Push-Pull Output}

\section*{Push-Pull Output}

The block implements a CMOS push-pull output stage. The gates of the complementary pair are connected together, and the gate voltage is given by \(\mathrm{Vg}=\mathrm{k}^{*}(\mathrm{X}+\mathrm{c})\) where X is the physical signal input value. Use this \(b\) interface integrated circuit behaviors, defined in Simulink(R) or by physical signal blocks, to an electrical netv

\section*{Parameters}


Input signal scaling, k :
1
V
Input signal offset, c:
0

\section*{Input signal scaling, \(\mathbf{k}\)}

The input physical signal X is mapped to the gate voltage by \(V g=k \cdot(\mathrm{X}+c)\), where \(k\) is the input signal scaling. Use this parameter in conjunction with the Input signal offset, \(\mathbf{c}\) to map

\section*{Push-Pull Output}
the range of X to the voltage range defined by the power supply. The default value is 1 V .

\section*{Input signal offset, \(\mathbf{c}\)}

The input physical signal X is mapped to the gate voltage by \(V g=\) \(k \cdot(\mathrm{X}+c)\), where \(c\) is the input signal offset. Use this parameter in conjunction with the Input signal scaling, \(\mathbf{k}\) to map the range of X to the voltage range defined by the power supply. The default value is 0 .

\section*{Push-Pull Output}

\section*{Output Characteristics Tab}

\section*{Block Parameters: Push-Pull Output}

Push-Pull Output
The block implements a CMOS push-pull output stage. The gates of the complementary pair are connected together, and the gate voltage is given by \(V g=k^{*}(X+c)\) where \(X\) is the physical signal input value. Use this \(b\) interface integrated circuit behaviors, defined in Simulink(R) or by physical signal blocks, to an electrical netv

\section*{Parameters}
Input Scaling Output Characteristics \(\quad\) Supply Voltage \(\quad\) Initial Conditions

Output current-voltage relationship:

Output resistance: 25
Propagation delay: 25
Protection diode on resistance: 5
Protection diode forward voltage: 0.6

Linear
25 Ohmns

\section*{Ohm}

V

\section*{Push-Pull Output}

\section*{Block Parameters: Push-Pull Output}

\section*{Push-Pull Output}

The block implements a CMOS push-pull output stage. The gates of the complementary pair are connected together, and the gate voltage is given by \(\mathrm{Vg}=\mathrm{k}^{*}(\mathrm{X}+\mathrm{c})\) where X is the physical signal input value. Use this block interface integrated circuit behaviors, defined in \(\operatorname{Simulink}(R)\) or by physical signal blocks, to an electrical network

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input Scaling & Output Characteristics & Supply Voltage & Initial Conditions \\
\hline
\end{tabular}

Output current-voltage relationship:
Power rail voltages, [ \(\mathrm{V}-\mathrm{V}+\) ], used for measurements:

Quadratic

Output resistance values at zero output current and at I - OH when
\(\mathrm{Vg}=\mathrm{V}\)-:
Output current I_OH when output is shorted to V - and \(\mathrm{Vg}=\mathrm{V}\)-:
Output resistance values at zero output current and at I_OL when \(\left[\begin{array}{lll}30 & 800\end{array}\right]\)
Vg=V+:

Output current I_OL when output is shorted to \(\mathrm{V}+\) and \(\mathrm{Vg}=\mathrm{V}+\) :

Propagation delay:
[ 25 250]

Protection diode on resistance: 5
Protection diode forward voltage: 0.6


25

5


\section*{Output current-voltage relationship}

Select the output model, Linear or Quadratic output model options. If Linear, the output voltage drops linearly with output current. If you select Quadratic, then the output voltage dependency on output current is defined by the quadratic I-V characteristics of the two output MOSFET devices. The default value is Linear.

\section*{Output resistance}

Defines one over the slope of the output I-V characteristic. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter. The default value is \(25 \Omega\).

Power rail voltages, [V-V+], used for measurements
Defines the rail voltages for which mask data output resistances and currents are defined. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter. The default value is [ 05 ] V.

Output resistance values at zero output current and at I_OH when \(\mathrm{Vg}=\mathrm{V}\) -

A row vector [ \(\mathrm{R} \_\mathrm{OH} 1 \mathrm{R} \_\mathrm{OH} 2\) ] of two resistance values. The first value \(\mathrm{R} \_\mathrm{OH} 1\) is the gradient of the output voltage-current relationship when the complementary pair output is HIGH ( \(\mathrm{Vg}=\mathrm{V}-\)-) and there is no output current. The second value \(\mathrm{R} \_\mathrm{OH} 2\) is the gradient of the output voltage-current relationship when the output is HIGH and the output current is I_OH. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter. The default value is [ 25250 ] \(\Omega\).

Output current I_OH when output is shorted to V - and \(\mathrm{Vg}=\mathrm{V}\) -
The resulting current when the output is HIGH ( \(\mathrm{Vg}=\mathrm{V}-\) ), but the load forces the output voltage to the negative supply rail. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter. The default value is 63 mA .

\section*{Push-Pull Output}

\section*{Output resistance values at zero output current and at I_OL when \(\mathrm{Vg}=\mathrm{V}+\)}

A row vector [ R_OL1 R_OL2 ] of two resistance values. The first value R_OL1 is the gradient of the output voltage-current relationship when the complementary pair output is LOW \((\mathrm{Vg}=\mathrm{V}+)\) and there is no output current. The second value R_OL2 is the gradient of the output voltage-current relationship when the output is LOW and the output current is I_OL. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter. The default value is [ 30800 ] \(\Omega\).

Output current I_OL when output is shorted to \(\mathrm{V}+\) and \(\mathrm{Vg}=\mathrm{V}+\) The resulting current when the output is \(\mathrm{LOW}(\mathrm{Vg}=\mathrm{V}+)\), but the load forces the output voltage to the positive supply voltage. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter. The default value is -45 mA .

\section*{Propagation delay}

Time it takes for the output to reach \(63.2 \%\) of its final value following a step change in the input, X. For Quadratic output, it is implemented by the lagged gate input demand. The default value is 25 ns .

\section*{Protection diode on resistance}

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is \(5 \Omega\).

\section*{Protection diode forward voltage}

The voltage above which the protection diode is turned on. The default value is 0.6 V .

\section*{Push-Pull Output}

\section*{Supply Voltage Tab}

\section*{Block Parameters: Push-Pull Output}

\section*{Push-Pull Output}

The block implements a CMOS push-pull output stage. The gates of the complementary pair are connected together, and the gate voltage is given by \(V g=k^{*}(X+c)\) where \(X\) is the physical signal input value. Use this \(b\) interface integrated circuit behaviors, defined in Simulink( \(R\) ) or by physical signal blocks, to an electrical netv

\section*{Parameters}
Input Scaling \(\quad\) Output Characteristics Supply Voltage \(\quad\) Initial Conditions

Negative power rail voltage, V -: 0 V
\begin{tabular}{l|l|l} 
Positive power rail voltage, \(\mathrm{V}+: 5\) & V
\end{tabular}

Negative power rail voltage, V-
Negative power supply voltage applied to the N -channel MOSFET source pin. The default value is 0 V .

Positive power rail voltage, V+
Positive power supply voltage applied to the P-channel MOSFET source pin. The default value is 5 V .

\section*{Push-Pull Output}

\section*{Initial Conditions Tab}

\section*{Block Parameters: Push-Pull Output}

\section*{Push-Pull Output}

The block implements a CMOS push-pull output stage. The gates of the complementary pair are connected together, and the gate voltage is given by \(\mathrm{Vg}=\mathrm{k}^{*}(\mathrm{X}+\mathrm{c})\) where X is the physical signal input value. Use this block interface integrated circuit behaviors, defined in \(\operatorname{Simulink}(R)\) or by physical signal blocks, to an electrical network

\section*{Parameters}
\begin{tabular}{|l|l|l|l|}
\hline Input Scaling & Output Characteristics & Supply Voltage & Initial Conditions \\
\hline
\end{tabular}
Initial output voltage: 0

\section*{Initial output voltage}

This parameter is visible when you select the Linear option for the Output current-voltage relationship parameter on the Output Characteristics tab. The parameter is used to set the voltage on the output capacitors so that the output voltage is initialized to the parameter's value. The default value is 0 V .

\section*{Push-Pull Output}

\section*{Initial input signal}

This parameter is visible when you select the Quadratic option for the Output current-voltage relationship parameter on the Output Characteristics tab. The parameter is used to initialize the propagation delay first-order lag such that there is no transient at time zero. The default value is 0 V .

Ports
The block has one input physical signal port X and one electrical conserving port that outputs the resulting voltage.

\section*{PVCCS}

Purpose Model polynomial voltage-controlled current source

\section*{Library}

SPICE-Compatible Components/Sources
Description


The PVCCS (Polynomial Voltage-Controlled Current Source) block represents a current source whose output current value is a polynomial function of the voltage across the input ports. The following equations describe the current through the source as a function of time:
- If you specify an \(n\)-element vector of polynomial coefficients for the Polynomial coefficients parameter:
\[
I_{\text {out }}=p(0)+p(1) * V_{\text {in }}+\ldots+p(n-1) * V_{\text {in }}^{n-1}+p(n) * V_{\text {in }}^{n}
\]
- If you specify a scalar coefficient for the Polynomial coefficients parameter:
\[
I_{\text {out }}=p * V_{\text {in }}
\]
where:
- \(V_{i n}\) is the voltage across the input ports.
- \(p\) is the Polynomial coefficients parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the output ports of the device and has a conductance GMIN:
- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is \(1 \mathrm{e}-12\).
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

\section*{Dialog Box and Parameters}

\section*{Ports}

Block Parameters: PYCCS
\(x\)
-PVCCS
The Polynomial Voltage-Controlled Current Source (PVCCS) block generates a current waveform, Iout, by evaluating a polynomial function for a single controlling input voltage, Vin. Vin is the time-dependent voltage across its input terminals.

If you specify a vector of polynomial coefficients, \(p\), in ascending order, the output is:
Iout \(=p(0)+p(1)^{*}\) Vin \(+\ldots+p(n-1)^{*}\) Vin \(\wedge^{\wedge}(n-1)+p(n)^{*}\) Vin^n
If you specify a scalar coefficient, \(p\), the block creates a linearly dependent output current.

Iout \(=p^{*}\) Vin
Parameters
Polynomial coefficients: \(\quad[01]\)

\section*{Polynomial coefficients}

The polynomial coefficients that relate the input voltage to the output current, as described in the preceding section. The default value is [ \(\left.\begin{array}{lll}0 & 1\end{array}\right]\).

The block has the following ports:
\(+\)
Positive electrical input voltage.

Negative electrical input voltage.
N+
Positive electrical output voltage.
N-
Negative electrical output voltage.

See Also PCCCS, PCCVS, PVCCS2, and PVCVS

\section*{Purpose}

\section*{Library}

Description


Model polynomial voltage-controlled current source with two controlling inputs

\section*{SPICE-Compatible Components/Sources}

The PVCCS2 (Two-Input Polynomial Voltage-Controlled Current Source) block represents a current source whose output current value is a polynomial function of the voltages across the pairs of controlling input ports. The following equations describes the current through the source as a function of time:
\[
I_{\text {out }}=p_{1}+p_{2} * V_{\text {in } 1}+p_{3} * V_{\text {in } 2}+p_{4} * V_{\text {in } 1}^{2}+p_{5} V_{\text {in } 1} * V_{\text {in } 2}+p_{6} * V_{\text {in } 2}^{2}+\ldots
\]
where:
- \(V_{\text {in } 1}\) is the voltage across the first pair of input ports.
- \(V_{i n 2}\) is the voltage across the second pair of input ports.
- \(p\) is the Polynomial coefficients parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the output ports of the device and has a conductance GMIN:
- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is \(1 \mathrm{e}-12\).
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

\section*{Dialog Box and Parameters}

\section*{Ports}

The block has the following ports:
\(+1\)
Positive electrical input voltage of first controlling source.
\(-1\)
Negative electrical input voltage of first controlling source.
\(+2\)
Positive electrical input voltage of second controlling source.
-2
Negative electrical input voltage of second controlling source.
N+
Positive electrical output voltage.
N-
Negative electrical output voltage.
See Also
PCCCS2, PCCVS2, PVCCS, and PVCVS2

\section*{Purpose}

Model polynomial voltage-controlled voltage source

\section*{Library}

Description


\section*{SPICE-Compatible Components/Sources}

The PVCVS (Polynomial Voltage-Controlled Voltage Source) block represents a voltage source whose output voltage value is a polynomial function of the voltage across the input ports. The following equations describe the voltage across the source as a function of time:
- If you specify an \(n\)-element vector of polynomial coefficients for the Polynomial coefficients parameter:
\[
V_{\text {out }}=p(0)+p(1) * V_{\text {in }}+\ldots+p(n-1) * V_{\text {in }}^{n-1}+p(n) * V_{\text {in }}^{n}
\]
- If you specify a scalar coefficient for the Polynomial coefficients parameter:
\[
V_{\text {out }}=p * V_{\text {in }}
\]
where:
- \(V_{i n}\) is the voltage across the input ports.
- \(p\) is the Polynomial coefficients parameter value.

\section*{Dialog Box and Parameters}

\section*{Ports}

The block has the following ports:
\(+\)
Positive electrical input voltage.

Negative electrical input voltage.
N+
Positive electrical output voltage.
N -
Negative electrical output voltage.

See Also PCCCS, PCCVS, PVCCS, and PVCVS2

\section*{PVCVS2}

Purpose

Library
Description


Model polynomial voltage-controlled voltage source with two controlling inputs

SPICE-Compatible Components/Sources
The PVCVS2 (Two-Input Polynomial Voltage-Controlled Voltage Source) block represents a voltage source whose output voltage value is a polynomial function of the voltages across the pairs of controlling input ports. The following equations describes the voltage across the source as a function of time:
\[
V_{\text {out }}=p_{1}+p_{2} * V_{\text {in } 1}+p_{3} * V_{\text {in } 2}+p_{4} * V_{i n 1}^{2}+p_{5} V_{\text {in } 1} * V_{\text {in } 2}+p_{6} * V_{\text {in } 2}^{2}+\ldots
\]
where:
- \(V_{i n 1}\) is the voltage across the first pair of input ports.
- \(V_{i n 2}\) is the voltage across the second pair of input ports.
- \(p\) is the Polynomial coefficients parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the output ports of the device and has a conductance GMIN:
- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is \(1 \mathrm{e}-12\).
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

\section*{Dialog Box and Parameters}

\section*{Ports}

The block has the following ports:
\(+1\)
Positive electrical input voltage of first controlling source.
-1
Negative electrical input voltage of first controlling source.
\(+2\)
Positive electrical input voltage of second controlling source.
-2
Negative electrical input voltage of second controlling source.
N+
Positive electrical output voltage.
N -
Negative electrical output voltage.
See Also
PCCCS2, PCCVS2, PVCCS2, and PVCVS

\section*{PWL Current Source}

\section*{Purpose Model lookup table current source \\ Library \\ SPICE-Compatible Components/Sources}

Description The PWL Current Source block represents a current source that you specify in lookup table form using a vector of time values and a vector of the corresponding current values. You must specify at least four time-current value pairs. The block generates a time-dependent current based on these time-current values using the selected interpolation and extrapolation methods. You have a choice of three interpolation methods and two extrapolation methods. The output current is independent of the voltage across the terminals of the source.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the + and - ports of the device and has a conductance GMIN:
- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is \(1 \mathrm{e}-12\).
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.

\section*{Dialog Box and Parameters}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Block Parameters: PWL Current Source} & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
PWL Current Source \\
The Piecewise Lookup Current Source (PWL) block uses time-current pairs of the form (Time, Current) to specify a time dependent current waveform. Like its SPICE equivalent, this source can use linear, cubic or spline interpolation methods to determine output current values at intermediate time points. The block can use either last point or last two points method for extrapolation.
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Parameters} \\
\hline Time specification: & [ 0123 & & 5 & \(\checkmark\) \\
\hline Current at specified time: & [0000 & & A & \(\checkmark\) \\
\hline Interpolation method: & Linear & & & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{Extrapolation method:} & Last point & & & \(\checkmark\) \\
\hline & OK & Cancel & Help & Apply \\
\hline
\end{tabular}

\section*{Time specification}

The vector of time values as a tabulated 1-by-n array. The time values vector must be strictly monotonically increasing. The values can be non-uniformly spaced. The default value is [ 0 1234 ]s.

\section*{Current at specified time}

The vector of current values as a tabulated 1-by-n array. The current values vector must be the same size as the time values vector. The default value is [ 000000\(] A\).

\section*{Interpolation method}

Select the method the block uses determine the output current values at intermediate time points that are not specified in the preceding vectors:
- Linear - Use a linear function. This is the default method.

\section*{PWL Current Source}
- Cubic - Use the Piecewise Cubic Hermite Interpolation Polinomial (PCHIP). For more information, see [1] and the pchip MATLAB function.
- Spline - Use the cubic spline interpolation algorithm described in [2].

\section*{Extrapolation method}

Select the method the block uses determine the output current values at time points that are outside the time range specified in the preceding vectors:
- Last point value - Use the last specified current value at the appropriate end of the range. That is, use the last specified current value for all time values greater than the last specified time argument, and the first specified current value for all time values less than the first specified time argument. This is the default method.
- Last 2 points - Extrapolate using the linear method (regardless of the interpolation method specified), based on the last two current values at the appropriate end of the range. That is, use the first and second specified current values if the time value is below the specified range, and the two last specified current values if the time value is above the specified range.
\begin{tabular}{ll} 
Ports & The block has the following ports: \\
+ \(\quad\) Positive electrical voltage. \\
References \(\quad\)\begin{tabular}{l} 
[1] D. Kahaner, Cleve Moler, and Stephen Nash Numerical Methods \\
and Software Prentice Hall, 1988.
\end{tabular}
\end{tabular}

\author{
[2] W.H. Press, B.P. Flannery, S.A. Teulkolsky, and W.T. Wetterling Numerical Recipes in C: The Art of Scientific Computing Cambridge University Press, 1992.
}

See Also PWL Voltage Source

\section*{Purpose}

Library
Description


Model lookup table voltage source
SPICE-Compatible Components/Sources
The PWL Voltage Source block represents a voltage source that you specify in lookup table form using a vector of time values and a vector of the corresponding voltage values. You must specify at least four time-current value pairs. The block generates a time-dependent voltage based on these time-voltage values using the selected interpolation and extrapolation methods. You have a choice of three interpolation methods and two extrapolation methods. The output voltage is independent of the current through the source.


\section*{Time specification}

The vector of time values as a tabulated 1-by-n array. The time values vector must be strictly monotonically increasing. The values can be non-uniformly spaced. The default value is [ 0 1234 ]s.

\section*{PWL Voltage Source}

\section*{Voltage at specified time}

The vector of voltage values as a tabulated 1-by-n array. The voltage values vector must be the same size as the time values vector. The default value is [ \(\left.\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right] \mathrm{V}\).

\section*{Interpolation method}

Select the method the block uses determine the output voltage values at intermediate time points that are not specified in the preceding vectors:
- Linear - Use a linear function. This is the default method.
- Cubic - Use the Piecewise Cubic Hermite Interpolation Polinomial (PCHIP). For more information, see [1] and the pchip MATLAB function.
- Spline - Use the cubic spline interpolation algorithm described in [2].

\section*{Extrapolation method}

Select the method the block uses determine the output voltage values at time points that are outside the time range specified in the preceding vectors:
- Last point value - Use the last specified voltage value at the appropriate end of the range. That is, use the last specified voltage value for all time values greater than the last specified time argument, and the first specified voltage value for all time values less than the first specified time argument. This is the default method.
- Last 2 points - Extrapolate using the linear method (regardless of the interpolation method specified), based on the last two voltage values at the appropriate end of the range. That is, use the first and second specified voltage values if the time value is below the specified range, and the two last specified voltage values if the time value is above the specified range.

The block has the following ports:

\section*{PWL Voltage Source}
\(+\)
    Positive electrical voltage.
    Negative electrical voltage.
References [1] D. Kahaner, Cleve Moler, and Stephen Nash Numerical Methods
and Software Prentice Hall, 1988.
[2] W.H. Press, B.P. Flannery, S.A. Teulkolsky, and W.T. Wetterling Numerical Recipes in C: The Art of Scientific Computing Cambridge University Press, 1992.
See Also PWL Current Source

\section*{Purpose}

Model switching and associated delay of relay

\section*{Library}

Description


Passive Devices
The Relay block models a relay controlled by an external physical signal. In the steady state, the relay behaves as follows:
- When the physical signal input PS rises above the Threshold parameter, the relay is energized (meaning closed). The common port C connects to the normally open port S2.
- When the physical signal input PS falls below the Threshold parameter, the relay is not energized (meaning open). The common port C connects to the normally closed port S1.

During switching, the relay behaves as follows:
- When the relay closes, the C to S 1 connection breaks open after delay Time-to-break C-S1 connection. The C to S2 connection closes after delay Time-to-make C-S2 connection.
- When the relay opens, the C to S 2 connection breaks open after delay Time-to-break C-S2 connection. The C to S 1 connection closes after delay Time-to-make C-S1 connection.

You can specify break delays that are longer than the close delays to implement a make-before-break behavior.

\section*{Basic \\ Assumptions and Limitations}

If the PS input changes during the switching process, the block behavior can be inaccurate. The switching delay occurs due to both mechanical inertia and the fact that modeling inertia as a delay requires approximation.

\section*{Relay}

\section*{Dialog}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{( Block Parameters: Relay} & \(x^{-x}\) \\
\hline \multicolumn{4}{|l|}{Relay} \\
\hline \multicolumn{4}{|l|}{The block represents a relay. When the physical signal input PS rises above the threshold, then the common terminal C gets connected to terminal S2. When PS falls below the threshold, then the common terminal C gets connected to terminal S1.} \\
\hline \multicolumn{4}{|l|}{The Connected resistance R and Open-circuit conductance G must be greater than zero.} \\
\hline \multicolumn{4}{|l|}{Parameters} \\
\hline Time-to-break C-S1 connection: & 0 & s & \(\checkmark\) \\
\hline Time-to-make C-S1 connection: & 0 & s & \(\checkmark\) \\
\hline Time-to-break C-S2 connection: & 0 & s & \(\checkmark\) \\
\hline Time-to-make C-S2 connection: & 0 & s & \(\checkmark\) \\
\hline Connected resistance R: & 0.01 & Ohm & \(\checkmark\) \\
\hline Open-circuit conductance G: & 1e-8 & 1/Ohm & \(\checkmark\) \\
\hline Threshold: & 0 & & \\
\hline \multirow[t]{2}{*}{Initial connection:} & C to S1 closed, C to S2 open & & \(\checkmark\) \\
\hline & OK & Help & Apply \\
\hline
\end{tabular}

\section*{Time-to-break C-S1 connection}

Time it takes the connection between ports C and S1 to break apart when the relay is energized. The default value is 0 s .

\section*{Time-to-make C-S1 connection}

Time it takes the connection between ports C and S1 to close when the relay is not energized. The default value is 0 s .

\section*{Time-to-break C-S2 connection}

Time it takes the connection between ports C and S2 to break apart when the relay is not energized. The default value is 0 s .

\section*{Time-to-make C-S2 connection}

Time it takes the connection between ports C and S 2 to close when the relay is not energized. The default value is 0 s .

\section*{Connected resistance \(\mathbf{R}\)}

Resistance across closed relay contacts. The parameter value must be greater than zero. The default value is \(0.01 \Omega\).

\section*{Open-circuit conductance G}

Conductance across open relay contacts. The parameter value must be greater than zero. The default value is \(1 \mathrm{e}-081 / \Omega\).

\section*{Threshold}

If the physical signal input rises above this value, the relay is energized. Conversely, if the physical signal input falls below this value, the relay is de-energized. The default value is 0 .

\section*{Initial connection}

For the initial state of the relay, select one of the following options:
- C to S1 closed, C to S2 open - The common port C connects to the S 1 contact. This is the default option.
- C to S1 open, C to S2 closed - The common port C connects to the S 2 contact.

Ports This block has the following ports:
PS
Physical signal that energizes and de-energizes the relay.
C
Common electrical port.
S1
Normally-closed electrical port.
S2
Normally-open electrical port.
See Also Simscape Switch

\section*{Resistor}

Purpose Model linear resistor with optional noise

\section*{Library}

Passive Devices
Description The Resistor block models a linear resistor, described with the following - - \(\mathrm{AM}-\mathrm{a}\) equation:
\[
i=v / R
\]
where:
- \(i\) is the current.
- \(v\) is the voltage.
- \(R\) is the resistance.

Optionally, the Resistor block can generate thermal noise current. If you set the Noise mode parameter to Enabled, then the defining equations are augmented by a discrete variable \(i_{\mathrm{N}}\) to represent thermal noise:
\[
i=v / R+i_{N}
\]

If the sampling time is \(h\), then the thermal noise is given by:
\[
i_{N}=\sqrt{2 k T / R} \frac{N(0,1)}{\sqrt{h}}
\]
where:
- \(k\) is the Boltzmann constant, \(1.3806504 \mathrm{e}-23 \mathrm{~J} / \mathrm{K}\).
- \(T\) is the temperature.
- \(R\) is the resistance.
- \(N\) is a Gaussian random number with zero mean and standard deviation of one.

\section*{Resistor}
- \(2 k T / R\) is the double-sided thermal noise power distribution (the single-sided equivalent is \(4 k T / R\) ).

If you set the Noise mode parameter to Disabled, then no noise is added, and the component behavior is identical to the Simscape Foundation library Resistor block.

\section*{Noise Options}

The block generates Gaussian noise by using the Random Number source in the Simscape Foundation library. You can control the random number seed by setting the Repeatability parameter:
- Not repeatable - Every time you simulate your model, the block resets the random seed using the MATLAB random number generator:
```

seed = randi(2^32-1);

```
- Repeatable - The block uses a hidden parameter, called auto_seed, to always start the simulation with the same random number. The value of auto_seed is set whenever you copy the Resistor block from the block library to the model, or when you make a new copy of the Resistor block from an existing one in a model. The block sets the value using the MATLAB random number generator command shown above.
- Specify seed - If you select this option, the additional Seed parameter lets you directly specify the random number seed value.

\section*{Basic}

Assumptions and
Limitations

Simulating with noise enabled slows down simulation. Choose the sample time ( \(h\) ) so that noise is generated only at frequencies of interest, and not higher.

\section*{Resistor}

\section*{Dialog Main Tab \\ Box and \\ Parameters}
Block Parameters: Resistor
Resistor
This block models a resistor with optional thermal noise. Thermal noise is assumed to have a power spectral density of \(2 \mathrm{kT} / \mathrm{R}\) where k is the Boltzmann constant, T is the temperature and R is the resistance value. The spectral density is band-limited using discrete sampling.

\section*{Parameters}
Main Noise
\begin{tabular}{l|l|l|l} 
Resistance: & 1 & Ohm
\end{tabular}

\section*{Resistance}

The resistance value. The default value is \(1 \Omega\).

\section*{Noise Tab}


\section*{Noise mode}

Select the noise option:
- Disabled - No noise is produced by the resistor. This is the default.
- Enabled - Resistor generates thermal noise current, and the associated parameters become visible on the Noise tab.

\section*{Device simulation temperature}

The temperature of the thermal resistor at the start of the simulation. The default value is \(25^{\circ} \mathrm{C}\).

\section*{Sample time}

Defines the rate at which the noise source is sampled. Choose it to reflect the frequencies of interest in your model. Making the sample time too small will unnecessarily slow down your simulation. The default value is \(1 \mathrm{e}-3 \mathrm{~s}\).

\section*{Repeatability}

Select the noise control option:

\section*{Resistor}
- Not repeatable - The random sequence used for noise generation is not repeatable. This is the default.
- Repeatable - The random sequence used for noise generation is repeatable, with a system-generated seed.
- Specify seed - The random sequence used for noise generation is repeatable, and you control the seed by using the Seed parameter.

\section*{Seed}

Random number seed used by the noise random number generator. This parameter is visible only if you select Specify seed for the Repeatability parameter. The default value is 0 .

\section*{Ports The block has the following ports:}
\(+\)
Positive electrical port.

Negative electrical port.
See Also Current Source, Voltage Source.

\section*{Purpose}

Model rotary transformer that measures motor rotation angle

\section*{Library}

Description


\section*{Sensors}

The Resolver block models a generic resolver, which consists of a rotary transformer that couples an AC voltage applied to the primary winding to two secondary windings. These secondary windings are physically oriented at 90 degrees to each other. As the rotor angle changes, the relative coupling between the primary and the two secondary windings varies. In the Resolver block model, the first secondary winding is oriented such that peak coupling occurs when the rotor is at zero degrees, and therefore the second secondary winding has minimum coupling when the rotor is at zero degrees.


Without loss of generality, it is assumed that the transformer between primary and rotor circuit is ideal with a ratio of \(1: 1\). This results in the rotor current and voltage being equivalent to the primary current and voltage.

You have two options for defining the block equations:

\section*{Resolver}
- Omit the dynamics by neglecting the transformer inductive terms. This model is only valid if the sensor is driven by a sine wave because any DC component on the primary side will pass to the output side.
- Include the inductive terms, thereby capturing voltage amplitude loss and phase differences. This model is valid for any input waveform. Within this option, you can either specify the inductances and the peak coupling coefficient directly, or specify the transformation ratio and measured impedances, in which case the block uses these values to determine the inductive terms.

\section*{Equations when Omitting Dynamics}

The equations are based on the superposition of two ideal transformers, both with coupling coefficients that depend on rotor angle. The two ideal transformers have a common primary winding. See the Simscape Ideal Transformer block reference page for more information on modeling ideal transformers. The equations are:
\[
\begin{aligned}
& K_{\mathrm{x}}=R \cos (N \Theta) \\
& K_{\mathrm{y}}=R \sin (N \Theta) \\
& v_{\mathrm{x}}=K_{\mathrm{x}} v_{\mathrm{p}} \\
& v_{\mathrm{y}}=K_{\mathrm{y}} v_{\mathrm{p}} \\
& i_{\mathrm{p}}=-K_{\mathrm{x}} i_{\mathrm{x}}-K_{\mathrm{y}} i_{\mathrm{y}}
\end{aligned}
\]
where:
- \(v_{\mathrm{p}}\) and \(i_{\mathrm{p}}\) are the rotor (or equivalently primary) voltage and current, respectively.
- \(v_{\mathrm{x}}\) and \(i_{\mathrm{x}}\) are the first secondary voltage and current, respectively.
- \(v_{\mathrm{y}}\) and \(i_{\mathrm{y}}\) are the second secondary voltage and current, respectively.
- \(K_{\mathrm{x}}\) is the coupling coefficient for the first secondary winding.

\section*{Resolver}
- \(K_{\mathrm{y}}\) is the coupling coefficient for the second secondary winding.
- \(R\) is the transformation ratio.
- \(N\) is the number of pole pairs.
- \(\Theta\) is the rotor angle.

\section*{Equations when Including Dynamics}

The equations are based on the superposition of two mutual inductors, both with coupling coefficients that depend on rotor angle. The two mutual inductors have a common primary winding. See the Simscape Mutual Inductor block reference page for more information on modeling mutual inductors. The equations are:
\[
\begin{aligned}
& v_{p}=R_{p} i_{p}+L_{p} \frac{d i_{p}}{d t}+\sqrt{L_{p} L_{s}} k\left(\cos (N \theta) \frac{d i_{x}}{d t}+\sin (N \theta) \frac{d i_{y}}{d t}\right) \\
& v_{x}=R_{s} i_{x}+L_{s} \frac{d i_{x}}{d t}+\sqrt{L_{p} L_{s}} k \cos (N \theta) \frac{d i_{p}}{d t} \\
& v_{y}=R_{s} i_{y}+L_{s} \frac{d i_{y}}{d t}+\sqrt{L_{p} L_{s}} k \sin (N \theta) \frac{d i_{p}}{d t}
\end{aligned}
\]
where:
- \(v_{\mathrm{p}}\) and \(i_{\mathrm{p}}\) are the rotor (or equivalently primary) voltage and current, respectively.
- \(v_{\mathrm{x}}\) and \(i_{\mathrm{x}}\) are the first secondary voltage and current, respectively.
- \(v_{\mathrm{y}}\) and \(i_{\mathrm{y}}\) are the second secondary voltage and current, respectively.
- \(R_{\mathrm{p}}\) is the rotor (or primary) resistance.
- \(L_{\mathrm{p}}\) is the rotor (or primary) inductance.
- \(R_{\mathrm{s}}\) is the stator (or secondary) resistance.
- \(L_{\mathrm{s}}\) is the stator (or secondary) inductance.

\section*{Resolver}
- \(N\) is the number of pole pairs.
- \(k\) is the coefficient of coupling.
- \(\Theta\) is the rotor angle.

It is assumed that coupling between the two secondary windings is zero.
Datasheets typically do not quote the coefficient of coupling and inductance parameters, but instead give the transformation ratio \(R\) and measured impedances. If you select Specify transformation ratio and measured impedances for the Parameterization parameter, then the values you provide are used to determine values for the equation coefficients, as defined above.

\section*{Basic Assumptions and Limitations}

The model is based on the following assumptions:
- The resolver draws no torque between the mechanical rotational ports R and C .
- The transformer between primary and rotor circuit is ideal with a ratio of 1:1.
- The coupling between the two secondary windings is zero.

\section*{Resolver}

\section*{Dialog}

Box and
Parameters

\section*{Block Parameters: Resolver}

\section*{Resolver}

This block represents a shaft angle resolver. Ports p1 and p2 represent the primary (rotor) winding to which the AC excitation voltage is applied. Port pairs [ x 1 x 2 ] and \([\mathrm{y} 1 \mathrm{y} 2]\) represent the two secondary (stator) windings. Ports R and C are mechanical rotational ports corresponding to rotor and stator respectively.

\section*{Parameters}

Parameterization:

\section*{Specify transformation ratio and omit dynamics}

\section*{Transformation ratio: \\ Number of pole pairs:}
0.5 1

Initial rotor angle:
0
```deg
```


## Parameterization

Select one of the following methods for block parameterization:

- Specify transformation ratio and omit dynamics Provide values for transformation ratio, number of pole pairs, and initial rotor angle only. This model neglects the transformer inductive terms, and is only valid if the sensor is driven by a sine wave. The equations are based on the superposition of two ideal transformers, both with coupling coefficients that depend on rotor angle. For more information,


## Resolver

see "Equations when Omitting Dynamics" on page 1-560. This is the default option.

- Specify transformation ratio and measured impedances - Provide additional values to determine the transformer inductive terms, to model the voltage amplitude loss and phase differences. This model is valid for any input waveform. The equations are based on the superposition of two mutual inductors, both with coupling coefficients that depend on rotor angle. For more information, see "Equations when Including Dynamics" on page 1-561.
- Specify equation parameters directly - Model the dynamics, but provide values for rotor and stator inductances and the peak coefficient of coupling, instead of transformation ratio and measured impedances. For more information, see "Equations when Including Dynamics" on page 1-561. This model is valid for any input waveform.


## Transformation ratio

The ratio between peak output voltage and peak input voltage assuming negligible secondary voltage drop due to resistance and inductance. This parameter is only visible when you select Specify transformation ratio and omit dynamics or Specify transformation ratio and measured impedances for the Parameterization parameter. If you select Specify transformation ratio and measured impedances for the Parameterization parameter, then the transformation ratio takes into account the voltage drop due to primary winding resistance. The default value is 0.5 .

## Rotor resistance

This is the rotor (or equivalently the primary) ohmic resistance. This parameter is only visible when you select Specify transformation ratio and measured impedances or Specify equation parameters directly for the Parameterization parameter. The default value is $70 \Omega$.

## Stator resistance

This is the secondary winding ohmic resistance. It is assumed that both secondaries have the same resistance. This parameter is only visible when you select Specify transformation ratio and measured impedances or Specify equation parameters directly for the Parameterization parameter. The default value is $180 \Omega$.

## Rotor reactance

This is the rotor (or equivalently the primary) reactance with the secondary windings open-circuit. This parameter is only visible when you select Specify transformation ratio and measured impedances for the Parameterization parameter. The default value is $100 \Omega$.

## Stator reactance

This is the stator (or equivalently the secondary) reactance with the primary winding open-circuit. This parameter is only visible when you select Specify transformation ratio and measured impedances for the Parameterization parameter. The default value is $300 \Omega$.

## Frequency at which reactances and transformation ratio are specified

This is the frequency of the sinusoidal source used when measuring the reactances. This parameter is only visible when you select Specify transformation ratio and measured impedances for the Parameterization parameter. The default value is 10 kHz .

## Rotor inductance

This is the rotor (or equivalently the primary) inductance $L_{\mathrm{p}}$. This parameter is only visible when you select Specify equation parameters directly for the Parameterization parameter. The default value is 0.0016 H .

## Stator inductance

This is the stator (or equivalently the secondary) inductance $L_{\mathrm{s}}$. This parameter is only visible when you select Specify equation

## Resolver

parameters directly for the Parameterization parameter. The default value is 0.0048 H .

## Peak coefficient of coupling

This is the peak coefficient of coupling between the primary and secondary windings. The parameter value should be greater than zero and less than one. This parameter is only visible when you select Specify equation parameters directly for the Parameterization parameter. The default value is 0.35 .

## Number of pole pairs

The number of pole pairs on the rotor. The default value is 1 .

## Initial rotor angle

The initial angle of the rotor, $\Theta$. The default value is 0 degrees.
Ports The block has the following ports:
p1, p2
Electrical ports of the primary winding.
x1, x2
Electrical ports of the first secondary winding.
$\mathrm{y} 1, \mathrm{y} 2$
Electrical ports of the second secondary winding.
R, C
Mechanical rotational ports.

## Purpose

Model an S-R Latch behaviorally

## Library

Logic

The S-R Latch block is an abstracted behavioral model of a set-reset latch. It does not model the internal individual MOSFET devices (see "Basic Assumptions and Limitations" on page 1-568 for details). Therefore, the block runs quickly during simulation but retains the correct I/O behavior.

If the gate voltage is greater than the threshold voltage $V_{T H}$, then the input taken is 1 (HIGH). Otherwise, the input is zero (LOW). The gate threshold voltage $V_{T H}$ is halfway between the Low level input voltage ( $V_{I L}$ ) and High level input voltage ( $V_{I H}$ ) parameters.
The block output logic level is either HIGH or LOW, according to the logic levels of the gate inputs and the S-R latch truth table.

$\mathbf{S}$	$\mathbf{R}$	$\mathbf{Q}$
0	0	0
0	1	0
1	0	1
1	1	1

The block models the gate as follows:

- The gate inputs have infinite resistance and finite or zero capacitance.
- The gate output offers a selection of two models: Linear and Quadratic. For more information, see "Selecting the Output Model for Logic Blocks". Use the Output current-voltage relationship parameter to specify the output model.
- You can specify propagation delay for both output models. For Linear output, the block sets the value of the gate output capacitor such that


## S-R Latch

the resistor-capacitor time constant equals the Propagation delay parameter value. For Quadratic output, the gate input demand is lagged to approximate the Propagation delay parameter value.

The block output voltage depends on the output model selected:

- For Linear model, output high is the High level output voltage parameter value, and output low is the Low level output voltage parameter value.
- For Quadratic model, the output voltage for High and Low states is a function of the output current, as explained in "Quadratic Model Output and Parameters". For zero load current, output high is Vcc (the Supply voltage parameter value), and output low is zero volts.


## Basic Assumptions and Limitations <br> Basic Assumptions and Limitations <br> Basic Assumptions and Limitations <br> Basic Assumptions and Limitations

The block does not model the internal individual MOSFET devices that make up the gate (except for the final MOSFET pair if you select the Quadratic option for the Output current-voltage relationship parameter). This limitation has the following implications:

- The behavior of this block is abstracted. In particular, response to input noise and inputs that are around the logic threshold voltage can be inaccurate. Also, dynamic response is approximate.
- The linear drop in output voltage as a function of output current is an approximation to the MOSFET or bipolar output behavior.
- Modeling of the output as a controlled voltage source is representative of a totem-pole or push-pull output stage. To model a device with an open-collector:
1 Connect the output pin to the base of an NPN Bipolar Transistor or PNP Bipolar Transistor block.

2 Set the Output resistance parameter to a suitable value.

## Dialog Box and Parameters

Inputs Tab


## Low level input voltage

Voltage value less than which the block interprets the input voltage as LOW. The default value is 2 V .

## High level input voltage

Voltage value greater than which the block interprets the input voltage as HIGH. The default value is 3 V .

## Average input capacitance

Fixed capacitance that approximates the input capacitance for a MOSFET gate. You can usually find this capacitance value on a manufacturer datasheet. The default value is 5 pF . Setting this value to zero can result in faster simulation times.

## S-R Latch

## Outputs Tab



## S-R Latch



## Output current-voltage relationship

Select the output model, Linear or Quadratic. The default value is Linear.

## Low level output voltage

Voltage value at the output when the output logic level is LOW. The default value is 0 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

## High level output voltage

Voltage value at the output when the output logic level is HIGH. The default value is 5 V . This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

## S-R Latch

## Output resistance

Value of the series output resistor that is used to model the drop in output voltage resulting from the output current. The default value is $25 \Omega$. You can derive this value from a datasheet by dividing the high-level output voltage by the maximum low-level output current. This parameter is available when you select the Linear option for the Output current-voltage relationship parameter.

Supply voltage
Supply voltage value applied to the gate in your circuit. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

## Measurement voltage

The gate supply voltage for which mask data output resistances and currents are defined. The default value is 5 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

Logic HIGH output resistance at zero current and at I_OH A row vector [ $\mathrm{R}_{-} \mathrm{OH} 1 \quad \mathrm{R} \_\mathrm{OH} 2$ ] of two resistance values. The first value $R_{-} O H 1$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and there is no output current. The second value $R_{-} O H 2$ is the gradient of the output voltage-current relationship when the gate is logic HIGH and the output current is $I_{-} O H$. The default value is [ 25250 ] $\Omega$. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

## Logic HIGH output current I_OH when shorted to ground

The resulting current when the gate is in the logic HIGH state, but the load forces the output voltage to zero. The default value is 63 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

## Logic LOW output resistance at zero current and at I_OL

A row vector [ $R \_O L 1$ R_OL2 ] of two resistance values. The first value $R_{-} O L 1$ is the gradient of the output voltage-current relationship when the gate is logic LOW and there is no output current. The second value $R \_O L 2$ is the gradient of the output voltage-current relationship when the gate is logic LOW and the output current is $I \_O L$. The default value is [ 30800 ] $\Omega$. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

## Logic LOW output current I_OL when shorted to Vcc

The resulting current when the gate is in the logic LOW state, but the load forces the output voltage to the supply voltage Vcc. The default value is -45 mA . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

## Propagation delay

Time it takes for the output to swing from LOW to HIGH or HIGH to LOW after the input logic levels change. The default value is 25 ns .

## Protection diode on resistance

The gradient of the voltage-current relationship for the protection diodes when forward biased. The default value is $5 \Omega$. This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

## Protection diode forward voltage

The voltage above which the protection diode is turned on. The default value is 0.6 V . This parameter is available when you select the Quadratic option for the Output current-voltage relationship parameter.

## S-R Latch

Initial Conditions Tab


## Output initial state

Specify whether the initial output state of the block is High or Low. This parameter is used for both linear and quadratic output states, provided that the Propagation delay parameter is greater than zero and the Solver Configuration block does not have the Start simulation from steady state option selected. The default value is Low.

Ports This block has the following ports:
s
Electrical input port corresponding to the set pin.
R
Electrical input port corresponding to the reset pin.
Q
Electrical output port corresponding to the output pin.

## Purpose

Brushless motor model with closed-loop torque control

## Library

Description


## Rotational Actuators

The Servomotor block represents a brushless motor model with closed-loop torque control. This block abstracts the torque-speed behavior of the combined motor and motor driver in order to support system-level simulation where simulation speed is important.

The block permits only the range of torques and speeds that the
torque-speed envelope defines. In the default block configuration, you specify this data in the block dialog box as a set of speed data points and corresponding maximum torque values. The following figure shows a typical torque-speed envelope for a servomotor.


Specify the torque-speed envelope for the positive torque region only, that is, quadrants 1 and 4 . If you specify only for positive speeds (quadrant 1 or, equivalently, the motoring region), then the quadrant 4 torque envelope is defined by the block as the mirror image of quadrant

## Servomotor

1. The servomotor torque-speed envelope has the same profile when the motor is operating in a reverse direction (quadrants 2 and 3).

Instead of providing tabulated torque-speed data, you can specify a maximum torque and a maximum power. This results in the torque-speed envelope profile shown below. The other three operating quadrants are constrained by this same profile.


The block models the electrical losses as the sum of four terms:

- A series resistance between the DC power supply and the motor drive.
- Fixed losses independent of torque and speed, $P_{0}$. Use this to account for fixed converter losses.
- A torque-dependent electrical loss $k \tau^{2}$, where $\tau$ is the torque and $k$ is a constant. This represents ohmic losses in the copper windings.
- A speed-dependent electrical loss $k_{\mathrm{w}} \omega^{2}$, where $\omega$ is the speed and $k_{\mathrm{w}}$ is a constant. This represents iron losses due to eddy currents.

The block produces a positive torque acting from the mechanical C to R ports.

## Thermal Port

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Temperature Dependence and Thermal port tabs to the block dialog box.

Use the thermal port to simulate the effects of copper resistance losses that convert electrical power to heat. For more information on using thermal ports and on the Temperature Dependence and Thermal port tab parameters, see "Simulating Thermal Effects in Rotational and Translational Actuators".

Basic	This model is based on the following assumptions:
Assumptions	- The motor driver tracks a torque demand with a time constant Tc.
and	- Motor speed fluctuations due to mechanical load do not affect the
Limitations	motor torque tracking.

## Servomotor

## Dialog <br> Box and Parameters

## Electrical Torque Tab



## Parameterize by

Select one of the following methods for block parameterization:

- Tabulated torque-speed envelope - Provide the vectors of rotational speeds and corresponding maximum torque values. This is the default option.
- Maximum torque and power - Define the torque-speed envelope by providing values for maximum permissible torque and motor power.


## Vector of rotational speeds

Rotational speeds for permissible steady-state operation. This parameter is visible only if you select Tabulated torque-speed envelope for the Parameterize by parameter. The default value is [0 $3.75 \mathrm{e}+037.5 \mathrm{e}+038 \mathrm{e}+03] \mathrm{rpm}$. To avoid poor performance due to an infinite slope in the torque-speed curve, specify a vector of rotational speeds that does not contain duplicate consecutive values.

## Vector of maximum torque values

Maximum torque values for permissible steady-state operation. This parameter is visible only if you select Tabulated torque-speed envelope for the Parameterize by parameter. These values correspond to the speeds in the Vector of rotational speeds parameter and define the torque-speed envelope for the motor. The default value is [0.09 $0.08 \quad 0.07$ $0] \mathrm{Nm}$.

## Maximum torque

The maximum permissible motor torque. This parameter is visible only if you select Maximum torque and power for the Parameterize by parameter. The default value is 0.1 Nm .

Maximum power
The maximum permissible motor power. This parameter is visible only if you select Maximum torque and power for the Parameterize by parameter. The default value is 30 W .

Torque Control time constant, Tc
Time constant with which the motor driver tracks a torque demand. The default value is 0.02 s .

## Electrical Losses Tab



## Motor and driver overall efficiency (percent)

The block defines overall efficiency as

$$
\eta=100 \frac{\tau_{0} \omega_{0}}{\tau_{0} \omega_{0}+P_{0}+k \tau_{0}^{2}+k_{w} \omega^{2}}
$$

where:

- $\tau_{0}$ represents the Torque at which efficiency is measured.
- $\omega_{0}$ represents the Speed at which efficiency is measured.
- $P_{0}$ represents the Fixed losses independent of torque or speed.
- $k \tau_{0}^{2}$ represents the torque-dependent electrical losses.
- $k_{\mathrm{w}} \omega^{2}$ represents the speed-dependent iron losses.

At initialization, the block solves the efficiency equation for $k$. The block neglects losses associated with the rotor damping.

## Speed at which efficiency is measured

Speed that the block uses to calculate torque-dependent electrical losses. The default value is $3.75 \mathrm{e}+03 \mathrm{rpm}$.

## Torque at which efficiency is measured

Torque that the block uses to calculate torque-dependent electrical losses. The default value is 0.08 Nm .

## Iron losses

Iron losses at the speed and torque at which efficiency is defined. The default value is 0 W .

## Fixed losses independent of torque and speed

Fixed electrical loss associated with the driver when the motor current and torque are zero. The default value is 0 W .

## Supply series resistance

The equivalent resistance used in series with the DC supply to model electrical losses that are proportional to the driver supply current. The block assumes that the DC supply current is approximately constant under constant load conditions. The default value is $0 \Omega$.

## Servomotor

## Mechanical Tab



## Rotor inertia

Rotor resistance to change in motor motion. The default value is $5 \mathrm{e}-06 \mathrm{~kg}^{*} \mathrm{~m}^{2}$. The value can be zero.

## Rotor damping

Rotor damping. The default value is $1 \mathrm{e}-05 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

## Initial rotor speed

Rotor speed at the start of the simulation. The default value is 0 rpm .

## Ports

This block has the following ports:
Positive electrical DC supplyNegative electrical DC supplyTrReference torque demandwMechanical speed outputCMechanical rotational conserving port
RMechanical rotational conserving port
See Also Generic Rotary Actuator, DC Motor, Induction Motor, Shunt Motor, and Universal Motor.

## SFFM Current Source

## Purpose Model single-frequency FM current source <br> Library <br> SPICE-Compatible Components/Sources

Description


The SFFM Current Source block represents a single-frequency current source whose frequency-modulated output current value is independent of the voltage across its terminals. The following equation describes the current through the source as a function of time:

$$
I_{\text {out }}=I O+I A * \sin ((2 \pi * F C * \text { Time })+M I * \sin (2 \pi * F S * \text { Time }))
$$

where:

- IO is the Current offset, IO parameter value.
- IA is the Current amplitude, IA parameter value.
- $F C$ is the Carrier frequency, FC parameter value.
- MI is the Modulation index, MI parameter value.
- FS is the Signal frequency, FS parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the + and - ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.


## SFFM Current Source

## Dialog Box and Parameters



## Current offset, IO

The magnitude of the time-independent part of the output current. The default value is 0 A .

## Current amplitude, IA

The magnitude of the sinusoidal part of the output current. The default value is 0 A .

## Carrier frequency, FC

Frequency of the carrier wave. The default value is 0 Hz . The value must be greater than or equal to 0 .

## SFFM Current Source

## Modulation index, MI

The amount by which the modulated signal varies around its unmodulated level. The default value is 0 . The value must be greater than or equal to 0 .

## Signal frequency, FS

Frequency of the modulated signal. The default value is 0 Hz . The value must be greater than or equal to 0 .

Ports
The block has the following ports:
$+$
Positive electrical voltage.

Negative electrical voltage.

See Also<br>SFFM Voltage Source

## Purpose

Model single-frequency FM voltage source

## Library

Description


SPICE-Compatible Components/Sources output voltage as a function of time:

The SFFM Voltage Source block represents a single-frequency voltage source whose frequency-modulated output voltage value is independent of the current through the source. The following equation describes the

$$
V_{\text {out }}=V O+V A * \sin ((2 \pi * F C * \text { Time })+M I * \sin (2 \pi * F S * \text { Time }))
$$

where:

- VO is the Voltage offset, VO parameter value.
- $V A$ is the Voltage amplitude, VA parameter value.
- $F C$ is the Carrier frequency, FC parameter value.
- MI is the Modulation index, MI parameter value.
- FS is the Signal frequency, FS parameter value.


## SFFM Voltage Source

## Dialog <br> Box and Parameters

## Voltage offset, VO

The magnitude of the time-independent part of the output voltage. The default value is 0 V .

## Voltage amplitude, VA

The magnitude of the sinusoidal part of the output voltage. The default value is 0 V .

## Carrier frequency, FC

Frequency of the carrier wave. The default value is 0 Hz . The value must be greater than or equal to 0 .

## Modulation index, MI

The amount by which the modulated signal varies around its unmodulated level. The default value is 0 . The value must be greater than or equal to 0 .

## Signal frequency, FS

Frequency of the modulated signal. The default value is 0 Hz . The value must be greater than or equal to 0 .

Ports The block has the following ports:

## $+$ <br> Positive electrical voltage. <br> Negative electrical voltage.

See Also<br>SFFM Current Source

## Shunt Motor

Purpose
Library
Description


Model electrical and torque characteristics of shunt motor

## Rotational Actuators

The Shunt Motor block represents the electrical and torque characteristics of a shunt motor using the following equivalent circuit model.


When you set the Model parameterization parameter to By equivalent circuit parameters, you specify the equivalent circuit parameters for this model:

- $R_{a}$ - Armature resistance
- $L_{a}$ - Armature inductance
- $R_{f}$ - Field winding resistance
- $L_{f}$ - Field winding inductance

The Shunt Motor block computes the motor torque as follows:
1 The magnetic field in the motor induces the following back emf $v_{b}$ in the armature:

$$
v_{b}=L_{a f} i_{f} \omega
$$

where $L_{a f}$ is a constant of proportionality and $\omega$ is the angular velocity.

2 The mechanical power is equal to the power reacted by the back emf:

$$
P=v_{b} i_{a}=L_{a f} i_{f} i_{a} \omega
$$

3 The motor torque is:

$$
T=P / \omega=L_{a f} i_{f} i_{a}
$$

The torque-speed characteristic for the Shunt Motor block model is related to the parameters in the preceding figure. When you set the Model parameterization parameter to By rated power, rated speed \& no-load speed, the block solves for the equivalent circuit parameters as follows:

1 For the steady-state torque-speed relationship, $L$ has no effect.
2 Sum the voltages around the loop:

$$
\begin{aligned}
& V=i_{a} R_{a}+L_{a f} i_{f} \omega \\
& V=i_{f} R_{f}
\end{aligned}
$$

3 Solve the preceding equations for $i_{a}$ and $i_{f}$.

$$
\begin{aligned}
& i_{f}=\frac{V}{R_{f}} \\
& i_{a}=\frac{V}{R_{a}}\left(1-\frac{L_{a f} w}{R_{f}}\right)
\end{aligned}
$$

4 Substitute these values of $i_{a}$ and $i_{f}$ into the equation for torque:

## Shunt Motor

$$
T=\frac{L_{a f}}{R_{a} R_{f}}\left(1-\frac{L_{a f} \omega}{R_{f}}\right) V^{2}
$$

The block uses the rated speed and power to calculate the rated torque. The block uses the rated torque and no-load speed values to get one equation that relates $R_{a}$ and $L_{a f} / R_{f}$. It uses the no-load speed at zero torque to get a second equation that relates these two quantities. Then, it solves for $R_{a}$ and $L_{a f} / R_{f}$

The block models motor inertia $J$ and damping $B$ for all values of the Model parameterization parameter. The output torque is:

$$
T_{\text {load }}=\frac{L_{a f}}{R_{a} R_{f}}\left(1-\frac{L_{a f} \omega}{R_{f}}\right) V^{2}-J \dot{\omega}-B \omega
$$

The block produces a positive torque acting from the mechanical C to R ports.

## Thermal Ports

The block has two optional thermal ports, one per winding, hidden by default. To expose the thermal ports, right-click the block in your model, and then from the context menu select Simscape block choices $>$ Show thermal port. This action displays the thermal ports on the block icon, and adds the Temperature Dependence and Thermal port tabs to the block dialog box. These tabs are described further on this reference page.
Use the thermal ports to simulate the effects of copper resistance losses that convert electrical power to heat. For more information on using thermal ports in actuator blocks, see "Simulating Thermal Effects in Rotational and Translational Actuators".

## Dialog Box and Parameters

- "Electrical Torque Tab" on page 1-593
- "Mechanical Tab" on page 1-596
- "Temperature Dependence Tab" on page 1-597
- "Thermal Port Tab" on page 1-598


## Electrical Torque Tab

## Block Parameters: Shunt Motor

Shunt Motor
This block represents the electrical and torque characteristics of a shunt motor.
Motor characteristics can be defined in terms of equivalent circuit parameters Ra (armature resitance), La (armature inductance), Rf (field winding resistance), Lf (field winding inductance) and Laf (back-emf constant). The back emf induced in the armature is given by $\mathrm{Vb}=$ Laf * If * W where If is the field current and W is the mechanical angular speed. Alteratively, the motor characteristics can be defined in terms of no-load speed, rated power \& speed, nominal voltage, starting current, La and Lf. If no information is available on armature or field winding inductance, these parameters can be set to a small non-zero value.

The block produces a positive torque acting from the mechanical C to R ports.

## Parameters



## Shunt Motor

## Model parameterization

Select one of the following methods for block parameterization:

- By equivalent circuit parameters - Provide electrical parameters for an equivalent circuit model of the motor. This is the default method.
- By rated power, rated speed \& no-load speed- Provide power and speed parameters that the block converts to an equivalent circuit model of the motor.


## Armature resistance

Resistance of the armature. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter. The default value is $110 \Omega$.

## Field winding resistance

Resistance of the field winding. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter. The default value is $2.5 \mathrm{e}+03 \Omega$.

## Back-emf constant

The ratio of the voltage generated by the motor to the motor speed. The default value is $5.11 \mathrm{~s} * \mathrm{~V} / \mathrm{rad} / \mathrm{A}$.

## Armature inductance

Inductance of the armature. If you do not have information about this inductance, set the value of this parameter to a small, nonzero number. The default value is 0.1 H . The value can be zero.

## Field winding inductance

Inductance of the field winding. If you do not have information about this inductance, set the value of this parameter to a small, nonzero number. The default value is 0.1 H . The value can be zero.

## No-load speed

Speed of the motor when no load is applied. This parameter is only visible when you select By rated power, rated speed \&

## Shunt Motor

no-load speed for the Model parameterization parameter. The default value is $4.6 e+03 \mathrm{rpm}$.

## Rated speed (at rated load)

Motor speed at the rated load. This parameter is only visible when you select By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is $4 \mathrm{e}+03 \mathrm{rpm}$.

## Rated load (mechanical power)

The mechanical load for which the motor is rated to operate. This parameter is only visible when you select By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is 50 W .

## Rated DC supply voltage

The voltage at which the motor is rated to operate. This parameter is only visible when you select By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is 220 V .

## Starting current at rated DC supply voltage

The initial current when starting the motor with the rated DC supply voltage. This parameter is only visible when you select By rated power, rated speed \& no-load speed for the Model parameterization parameter. The default value is 2.09 A .

## Shunt Motor

## Mechanical Tab

## Block Parameters: Shunt Motor

## Shunt Motor

This block represents the electrical and torque characteristics of a shunt motor.
Motor characteristics can be defined in terms of equivalent circuit parameters Ra (armature resitance), La (armature inductance), Rf (field winding resistance), Lf (field winding inductance) and Laf (back-emf constant). The back emf induced in the armature is given by $\mathrm{Vb}=$ Laf * If * W where If is the field current and W is the mechanical angular speed. Alteratively, the motor characteristics can be defined in terms of no-load speed, rated power \& speed, nominal voltage, starting current, La and Lf. If no information is available on armature or field winding inductance, these parameters can be set to a small non-zero value.

The block produces a positive torque acting from the mechanical C to R ports.

## Parameters

Electrical Torque	Mechanical		
Rotor inertia:	$2 \mathrm{e}-4$	$\mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2$	-
Rotor damping:	$1 \mathrm{e}-6$	$\mathrm{~N}^{*} \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$	-
Initial rotor speed:	0	rpm	

## Rotor inertia

Rotor inertia. The default value is $2 e-04 \mathrm{~kg}^{*} \mathrm{~m}^{2}$. The value can be zero.

## Rotor damping

Rotor damping. The default value is $1 \mathrm{e}-06 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

## Initial rotor speed

Speed of the rotor at the start of the simulation. The default value is 0 rpm .

## Temperature Dependence Tab

This tab appears only for blocks with exposed thermal ports. For more information, see "Thermal Ports" on page 1-897.


## Shunt Motor

## Resistance temperature coefficients, [alpha_f alpha_a]

A 1 by 2 row vector defining the coefficient $\alpha$ in the equation relating resistance to temperature, as described in "Thermal Model for Actuator Blocks". The first element corresponds to the field winding, and the second to the armature. The default value is for copper, and is [ 0.003930 .00393 ] 1/K.

## Measurement temperature

The temperature for which motor parameters are defined. The default value is 25 C .

## Thermal Port Tab

This tab appears only for blocks with exposed thermal ports. For more information, see "Thermal Ports" on page 1-897.

## Shunt Motor

```
Block Parameters: Shunt Motor
Shunt Motor
This block represents the electrical and torque characteristics of a shunt motor.
Motor characteristics can be defined in terms of equivalent circuit parameters Ra (armature resitance), La (armature inductance), Rf (field winding resistance), Lf (field winding inductance) and Laf (back-emf constant). The back emf induced in the armature is given by \(\mathrm{Vb}=\) Laf * If * W where If is the field current and W is the mechanical angular speed. Alteratively, the motor characteristics can be defined in terms of no-load speed, rated power \& speed, nominal voltage, starting current, La and Lf. If no information is available on armature or field winding inductance, these parameters can be set to a small non-zero value.
The block produces a positive torque acting from the mechanical C to R ports.
Parameters
\begin{tabular}{|l|l|l|l|}
\hline Electrical Torque & Mechanical & Temperature Dependence & Thermal Port \\
\hline
\end{tabular} \begin{tabular}{|llll|}
\hline Thermal masses, [Mf Ma]: & {\(\left[\begin{array}{lll}100 & 100\end{array}\right]\)} & \(\mathrm{J} / \mathrm{K}\) \\
Initial temperatures, [Tf Ta]: & {\([2525]\)} & C \\
\hline
\end{tabular}
```


## Thermal masses, [Mf Ma]

A 1 by 2 row vector defining the thermal mass for the field and armature windings. The thermal mass is the energy required to raise the temperature by one degree. The default value is [ 100 100 ] J/K.

## Initial temperatures, [Tf Ta]

A 1 by 2 row vector defining the temperature of the field and armature thermal ports at the start of simulation. The default value is [ 2525 ] C.

Ports The block has the following ports:

## Shunt Motor

$+$
Positive electrical input.

Negative electrical input.
C
Mechanical rotational conserving port.
R
Mechanical rotational conserving port.
Hf
Field winding thermal port. For more information, see "Thermal Ports" on page 1-897.

Ha
Armature winding thermal port. For more information, see "Thermal Ports" on page 1-897.

## References [1] Bolton, W. Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering, 3rd edition Pearson Education, 2004.

See Also DC Motor, Induction Motor, Servomotor, and Universal Motor.

## Sinusoidal Current Source

## Purpose Model damped sinusoidal current source

## Library

SPICE-Compatible Components/Sources
Description


The Sinusoidal Current Source block represents a damped sinusoidal current source whose output current is independent of the voltage across the terminals of the source. The following equations describe the current through the source as a function of time:

$$
\begin{aligned}
& I_{\text {out }}(\text { Time }<T D)=I O \\
& I_{\text {out }}(\text { Time } \geq T D)=I O+I A^{*} e^{-(\text {Time-TD })^{* D F} *} * \sin (2 \pi * F R E Q *(\text { Time }-T D))
\end{aligned}
$$

where:

- IO is the Current offset, IO parameter value.
- IA is the Sinusoidal amplitude, IA parameter value.
- $F R E Q$ is the Sinusoidal frequency, FREQ parameter value.
- $T D$ is the Time delay, TD parameter value.
- DF is the Damping factor, DF parameter value.

The block uses a small conductance internally to prevent numerical simulation issues. The conductance connects the + and - ports of the device and has a conductance GMIN:

- By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$.
- To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.


## Sinusoidal Current Source

## Dialog Box and Parameters



## Current offset, I0

The magnitude of the time-independent part of the output current. The default value is 0 A .

## Sinusoidal amplitude, IA

The magnitude of the sinusoidal part of the output current. The default value is 0 A .

## Sinusoidal frequency, FREQ

The frequency of the output sine wave. The default value is $1 \mathrm{e}+06$ Hz . The value can be less than 0 .

Time delay, TD
The time at which the sine wave first starts. The default value is 0 s . The value can be less than 0 .

## Damping factor, DF

The amount by which to amplify or reduce the exponential damping term that multiples the sine wave to produce the output current. The default value is $0 \mathrm{1} / \mathrm{s}$. The value must be greater than or equal to 0 .

Ports The block has the following ports:

Positive electrical voltage.

Negative electrical voltage.
See Also Sinusoidal Voltage Source

## Sinusoidal Voltage Source

## Purpose Model damped sinusoidal voltage source

## Library

SPICE-Compatible Components/Sources

## Description The Sinusoidal Voltage Source block represents a damped sinusoidal

 voltage source whose output voltage is independent of the current through the source. The following equations describe the output as a function of time:$$
\begin{aligned}
& V_{\text {out }}(\text { Time }<T D)=V O \\
& V_{\text {out }}(\text { Time } \geq T D)=V O+V A^{*} e^{-(\text {Time-TD })^{*} D F} * \sin (2 \pi * F R E Q *(\text { Time }-T D))
\end{aligned}
$$

where:

- V0 is the Voltage offset, VO parameter value.
- $V A$ is the Sinusoidal amplitude, VA parameter value.
- FREQ is the Sinusoidal frequency, FREQ parameter value.
- TD is the Time delay, TD parameter value.
- $D F$ is the Damping factor, DF parameter value.


## Sinusoidal Voltage Source

## Dialog Box and Parameters



Voltage offset, V0
The magnitude of the time-independent part of the output voltage. The default value is 0 V .

## Sinusoidal amplitude, VA

The magnitude of the sinusoidal part of the output voltage. The default value is 0 V .

## Sinusoidal frequency, FREQ

The frequency of the output sine wave. The default value is $1 \mathrm{e}+06$ Hz . The value can be less than 0 .

## Time delay, TD

The time at which the sine wave first starts. The default value is 0 s . The value can be less than 0 .

## Sinusoidal Voltage Source

## Damping factor, DF

The amount by which to amplify or reduce the exponential damping term that multiples the sine wave to produce the output voltage. The default value is $0 \mathrm{1} / \mathrm{s}$. The value must be greater than or equal to 0 .

Ports The block has the following ports:
$+$
Positive electrical voltage.

Negative electrical voltage.
See Also Sinusoidal Current Source

Purpose	Solar cell model
Library	Sources
Description	The Solar Cell block represents a solar cell current source.
	The solar cell model includes the following components:
	- "Solar-Induced Current" on page 1-607
	- "Temperature Dependence" on page 1-610
	-"Thermal Port" on page 1-611
	Solar-Induced Current

The block represents a single solar cell as a resistance $R_{s}$ that is connected in series with a parallel combination of the following elements:

- Current source
- Two exponential diodes
- Parallel resistor $R_{p}$

The following illustration shows the equivalent circuit diagram:


The output current $I$ is:

$$
I=I_{p h}-I_{s} *\left(e^{\left(V+I * R_{s}\right) /\left(N^{*} V_{t}\right)}-1\right)-I_{s 2} *\left(e^{\left(V+I * R_{s}\right) /\left(N_{2}^{*} V_{t}\right)}-1\right)-\left(V+I * R_{s}\right) / R_{p}
$$

where:

- $I_{p h}$ is the solar-induced current:

$$
I_{p h}=I_{p h 0} \times \frac{I_{r}}{I_{r 0}}
$$

where:

- $I_{r}$ is the irradiance (light intensity) in $\mathrm{W} / \mathrm{m}^{2}$ falling on the cell.
- $I_{p h o}$ is the measured solar-generated current for the irradiance $I_{r 0}$.
- $I_{s}$ is the saturation current of the first diode.
- $I_{s 2}$ is the saturation current of the second diode.
- $V_{t}$ is the thermal voltage, $k T / q$, where:
- $k$ is the Boltzmann constant.
- $T$ is the Device simulation temperature parameter value.
- $q$ is the elementary charge on an electron.
- $N$ is the quality factor (diode emission coefficient) of the first diode.
- $N_{2}$ is the quality factor (diode emission coefficient) of the second diode.
- $V$ is the voltage across the solar cell electrical ports.

The quality factor varies for amorphous cells, and is typically 2 for polycrystalline cells.
The block lets you choose between two models:

- An 8-parameter model where the preceding equation describes the output current
- A 5-parameter model that applies the following simplifying assumptions to the preceding equation:
- The saturation current of the second diode is zero.
- The impedance of the parallel resistor is infinite.

If you choose the 5 -parameter model, you can parameterize this block in terms of the preceding equivalent circuit model parameters or in terms of the short-circuit current and open-circuit voltage the block uses to derive these parameters.

All models adjust the block resistance and current parameters as a function of temperature.

You can model any number of solar cells connected in series using a single Solar Cell block by setting the parameter Number of series cells to a value larger than 1 . Internally the block still simulates only the equations for a single solar cell, but scales up the output voltage according to the number of cells. This results in a more efficient simulation than if equations for each cell were simulated individually.

If you want to model N cells in parallel, you can do so for single cells by scaling the parameter values accordingly. That is, multiply short-circuit

## Solar Cell

current, diode saturation current, and solar-generated currents by N , and divide series resistance by N . To connect solar cell blocks in parallel, where each block contains multiple cells in series, make multiple copies of the block and connect accordingly.

## Temperature Dependence

Several solar cell parameters depend on temperature. The solar cell temperature is specified by the Device simulation temperature parameter value.
The block provides the following relationship between the solar-induced current $I_{p h}$ and the solar cell temperature $T$ :

$$
I_{p h}(t)=I_{p h} *\left(1+T I P H 1 *\left(T-T_{\text {meas }}\right)\right)
$$

where:

- TIPH1 is the First order temperature coefficient for Iph, TIPH1 parameter value.
- $T_{\text {meas }}$ is the Measurement temperature parameter value.

The block provides the following relationship between the saturation current of the first diode $I_{s}$ and the solar cell temperature $T$ :

$$
I_{s 1}(T)=I_{s 1} *\left(\frac{T}{T_{\text {meas }}}\right)^{(T X I S 1 / N)} * e^{\left(E G^{*}\left(\frac{T}{T_{\text {meas }}}-1\right) /\left(N^{*} V_{t}\right)\right)}
$$

where TXIS1 is the Temperature exponent for Is, TXIS1 parameter value.

The block provides the following relationship between the saturation current of the second diode $I_{s 2}$ and the solar cell temperature $T$ :

$$
I_{s 2}(T)=I_{\mathrm{s} 2} *\left(\frac{T}{T_{\text {meas }}}\right)^{\left(T X I S 2 / N_{2}\right)} * e^{\left(E G *\left(\frac{T}{T_{\text {meas }}}-1\right) /\left(N_{2} * V_{t}\right)\right)}
$$

where TXIS2 is the Temperature exponent for Is2, TXIS2 parameter value.
The block provides the following relationship between the series resistance $R_{s}$ and the solar cell temperature $T$ :

$$
R_{s}(T)=R_{s} *\left(\frac{T}{T_{\text {meas }}}\right)^{T R S 1}
$$

where TRS1 is the Temperature exponent for Rs, TRS1 parameter value.

The block provides the following relationship between the parallel resistance $R_{p}$ and the solar cell temperature $T$ :

$$
R_{p}(T)=R_{p} *\left(\frac{T}{T_{\text {meas }}}\right)^{T R P 1}
$$

where TRP1 is the Temperature exponent for Rp, TRP1 parameter value.

## Thermal Port

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.

The thermal port model, shown in the following illustration, represents just the thermal mass of the device. The thermal mass is directly connected to the component thermal port H. An internal Ideal Heat Flow Source supplies a heat flow to the port and thermal mass. This heat flow represents the internally generated heat.

## Solar Cell

Dialog
Box and
Parameters


The internally generated heat in the solar cell is calculated according to the equivalent circuit diagram, shown at the beginning of the reference page, in the "Solar-Induced Current" on page 1-607 section. It is the sum of the $\mathrm{i}^{\wedge} 2 \cdot \mathrm{R}$ losses for each of the resistors plus the losses in each of the diodes.

The internally generated heat due to electrical losses is a separate heating effect to that of the solar irradation. To model thermal heating due to solar irradiation, you must account for it separately in your model and add the heat flow to the physical node connected to the solar cell thermal port.

- "Cell Characteristics Tab" on page 1-613
- "Configuration Tab" on page 1-616
- "Temperature Dependence Tab" on page 1-617
- "Thermal Port Tab" on page 1-618


## Cell Characteristics Tab



## Parameterize by

Select one of the following methods for block parameterization:

- By s/c current and o/c voltage, 5 parameter - Provide short-circuit current and open-circuit voltage that the block converts to an equivalent circuit model of the solar cell. This is the default option.
- By equivalent circuit parameters, 5 parameter Provide electrical parameters for an equivalent circuit model


## Solar Cell

of the solar cell using the 5-parameter solar cell model that makes the following assumptions:

- The saturation current of the second diode is zero.
- The parallel resistor has infinite impedance.
- By equivalent circuit parameters, 8 parameter Provide electrical parameters for an equivalent circuit model of the solar cell using the 8-parameter solar cell model.


## Short-circuit current, Isc

The current that flows when you short-circuit the solar cell. This parameter is only visible when you select By s/c current and $0 / \mathrm{c}$ voltage, 5 parameter for the Parameterize by parameter. The default value is 7.34 A .

## Open-circuit voltage, Voc

The voltage across the solar cell when it is not connected. This parameter is only visible when you select By s/c current and $o / c$ voltage, 5 parameter for the Parameterize by parameter. The default value is 0.6 V .

## Diode saturation current, Is

The asymptotic reverse current of the first diode for increasing reverse bias in the absence of any incident light. This parameter is only visible when you select one of the following settings:

- By equivalent circuit parameters, 5 parameter for the Parameterize by parameter
- By equivalent circuit parameters, 8 parameter for the Parameterize by parameter

The default value is $1 \mathrm{e}-06 \mathrm{~A}$.

## Diode saturation current, Is2

The asymptotic reverse current of the second diode for increasing reverse bias in the absence of any incident light. This parameter is only visible when you select By equivalent circuit
parameters, 8 parameter for the Parameterize by parameter. The default value is 0 A .

## Solar-generated current, Iph0

The solar-induced current when the irradiance is $I_{r 0}$. This parameter is only visible when you select one of the following settings:

- By equivalent circuit parameters, 5 parameter for the Parameterize by parameter
- By equivalent circuit parameters, 8 parameter for the Parameterize by parameter

The default value is 7.34 A .

## Irradiance used for measurements, $\operatorname{Ir} 0$

The irradiance that produces a current of $I_{p h o}$ in the solar cell. The default value is $1000 \mathrm{~W} / \mathrm{m}^{2}$.

## Quality factor, N

The emission coefficient of the first diode. The default value is 1.5 .

## Quality factor, N2

The emission coefficient of the second diode. This parameter is only visible when you select By equivalent circuit parameters, 8 parameter for the Parameterize by parameter. The default value is 2 .

## Series resistance, Rs

The internal series resistance. The default value is $0 \Omega$.
Parallel resistance, Rp
The internal parallel resistance. This parameter is only visible when you select By equivalent circuit parameters, 8 parameter for the Parameterize by parameter. The default value is inf $\Omega$.

## Solar Cell

## Configuration Tab



## Number of series cells

The number of series-connected solar cells modeled by the block.
The default value is 1 . The value must be greater than 0 .

## Temperature Dependence Tab

```
Block Parameters: Solar Cell
```

Solar Cell
This block models a solar cell as a parallel combination of a current source, two exponential diodes and a parallel resistor, Rp, that are connected in series with a resistance Rs. The output current I is given by
$\mathrm{I}=\mathrm{Iph}-\mathrm{Is}{ }^{*}\left(\mathrm{e}^{\wedge}\left(\left(\mathrm{V}+\mathrm{I}^{*} \mathrm{Rs}\right) /\left(\mathrm{N}^{*} \mathrm{~V} \mathrm{t}\right)\right)-1\right)-\mathrm{Is} 2^{*}\left(\mathrm{e}^{\wedge}\left(\left(\mathrm{V}+\mathrm{I}^{*} \mathrm{Rs}\right) /\left(\mathrm{N} 2^{*} \mathrm{~V} \mathrm{t}\right)\right)-1\right)-\left(\mathrm{V}+\mathrm{I}^{*} \mathrm{Rs}\right) / \mathrm{Rp}$
where Is and Is2 are the diode saturation currents, Vt is the thermal voltage, N and N 2 are the quality factors (diode emission coefficients) and Iph is the solar-generated current.

Models of reduced complexity can be specified in the mask. The quality factor varies for amorphous cells, and typically has a value in the range of 1 to 2 . The physical signal input Ir is the irradiance (light intensity) in W/m^2 falling on the cell. The solar-generated current Iph is given by $\mathrm{Ir}^{*}(\mathrm{Iph} 0 / \mathrm{Ir} 0)$ where Iph 0 is the measured solargenerated current for irradiance Ir0.

Parameters

Cell Characteristics	Configuration	Temperature Dependence	
First order temperature   coefficient for Iph, TIPH1: 0    Energy gap, EG: 1.11 $1 / \mathrm{K}$   Temperature exponent for Is,   TXIS1: 3 eV   Temperature exponent for Rs,   TRS1: 0    Measurement temperature: 25 C   Device simulation temperature: 25 C			

## First order temperature coefficient for Iph, TIPH1

The order of the linear increase in the solar-generated current as temperature increases. The default value is $01 / \mathrm{K}$. The value must be greater than or equal to 0 .

## Energy gap, EG

The solar cell activation energy. The default value is 1.11 eV . The value must be greater than or equal to 0.1.

## Solar Cell

## Temperature exponent for Is, TXIS1

The order of the exponential increase in the current from the first diode as temperature increases. The default value is 3 . The value must be greater than or equal to 0 .

## Temperature exponent for Is2, TXIS2

The order of the exponential increase in the current from the second diode as temperature increases. This parameter is only visible when you select By equivalent circuit parameters, 8 parameter for the Parameterize by parameter. The default value is 3 . The value must be greater than or equal to 0 .

Temperature exponent for Rs, TRS1
The order of the exponential increase in the series resistance as temperature increases. The default value is 0 . The value must be greater than or equal to 0 .

## Temperature exponent for Rp, TRP1

The order of the exponential increase in the parallel resistance as temperature increases. This parameter is only visible when you select By equivalent circuit parameters, 8 parameter for the Parameterize by parameter. The default value is 0 . The value must be greater than or equal to 0 .

## Measurement temperature

The temperature at which the solar cell parameters were measured. The default value is 25 C . The value must be greater than 0.

## Device simulation temperature

The temperature at which the solar cell is simulated. The default value is 25 C . The value must be greater than 0 .

## Thermal Port Tab

This tab appears only for blocks with exposed thermal ports. For more information, see "Thermal Port" on page 1-611.

```
Block Parameters: Solar Cell
Solar Cell
This block models a solar cell as a parallel combination of a current source, two exponential diodes and a parallel
resistor, Rp, that are connected in series with a resistance Rs. The output current I is given by
I}=\textrm{Iph}-\textrm{Is}*(\mp@subsup{\textrm{e}}{}{\wedge}((\textrm{V}+\mp@subsup{\textrm{I}}{}{*}\textrm{Rs})/(\mp@subsup{\textrm{N}}{}{*}\textrm{V}t))-1)-\textrm{Is}\mp@subsup{2}{}{*}(\mp@subsup{\textrm{e}}{}{\wedge}((\textrm{V}+\mp@subsup{\textrm{I}}{}{*}\textrm{Rs})/(N2*V\textrm{V}))-1)-(\textrm{V}+\mp@subsup{\textrm{I}}{}{*}\textrm{Rs})/R
where Is and Is2 are the diode saturation currents, Vt is the thermal voltage, N and N 2 are the quality factors (diode emission coefficients) and Iph is the solar-generated current.
Models of reduced complexity can be specified in the mask. The quality factor varies for amorphous cells, and typically has a value in the range of 1 to 2 . The physical signal input Ir is the irradiance (light intensity) in \(\mathrm{W} / \mathrm{m}^{\wedge} 2\) falling on the cell. The solar-generated current Iph is given by \(\mathrm{Ir}^{*}\) (Iph0/Ir0) where Iph 0 is the measured solargenerated current for irradiance Ir0.
Parameters
\begin{tabular}{|l|c|l|l|l|}
\hline Cell Characteristics & Configuration & Temperature Dependence & Thermal Port & \\
\hline Thermal mass: & 100 & \(\mathrm{~J} / \mathrm{K}\) \\
\hline Initial temperature: & 25 & C & - \\
\hline
\end{tabular}
```


## Thermal mass

The heat energy required to raise the temperature of the solar cell by one degree. When modeling more than one cell in series, specify the thermal mass for a single cell. This value gets multiplied internally by the number of cells to determine the total thermal mass. The default value is $100 \mathrm{~J} / \mathrm{K}$.

## Initial temperature

The temperature of the solar cell at the start of simulation. The default value is 25 C .

The block has the following ports:

## Solar Cell


#### Abstract

Ir Incident irradiance $+$ Positive electrical voltage

Negative electrical voltage $\begin{array}{ll}\text { References } & \text { [1] Gow, J.A. and C.D. Manning. "Development of a Photovoltaic } \\ & \text { Array Model for Use in Power-Electronics Simulation Studies." IEEE } \\ & \text { Proceedings of Electric Power Applications, Vol. 146, No. 2, 1999, pp. } \\ & 193-200 .\end{array}$


## Solenoid

## Purpose

Model electrical characteristics and generated force of solenoid

## Library

Description
Translational Actuators
The Solenoid block represents the electrical characteristics and generated force for the solenoid in the following figure:


The return spring is optional. To remove the effects of this spring from the model, set the Spring constant parameter to 0 .

The equation of motion for the plunger as a function of position, $x$, is:

$$
F_{l}+m \ddot{x}+\lambda \dot{x}+k x=F_{e}
$$

where $F_{e}$ is the electromagnetic force, $F_{l}$ is the load force, $\lambda$ is the viscous damping term and $m$ is the plunger mass. The electromagnetic force is related to the solenoid current and inductance by:

$$
F_{e}=\frac{1}{2} i^{2} \frac{\partial L(x)}{\partial x}
$$

## Solenoid

The inductance, which is derived in [1], can be written as:

$$
\frac{\partial L(x)}{\partial x}=\frac{-\beta}{(\alpha+\beta x)^{2}}
$$

where $\alpha$ and $\beta$ are constants. Plugging the preceding equation into the equation for electromagnetic force gives the force-stroke relationship of the solenoid for a current $i_{0}$ :

$$
F=\frac{1}{2} i_{0}{ }^{2} \frac{-\beta}{(\alpha+\beta x)^{2}}
$$

The Solenoid block solves for $\alpha$ and $\beta$ by taking the two specified force and stroke measurements and substituting them into the preceding equation. It solves the resulting equations for $\alpha$ and $\beta$.

A positive current from the electrical + to - ports creates a negative force (i.e., a pulling force) from the mechanical C to R ports.

## Thermal Port

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Temperature Dependence and Thermal port tabs to the block dialog box.

Use the thermal port to simulate the effects of copper resistance losses that convert electrical power to heat. For more information on using thermal ports and on the Temperature Dependence and Thermal port tab parameters, see "Simulating Thermal Effects in Rotational and Translational Actuators".

## Dialog <br> Box and Parameters

## Magnetic Force Tab



## Solenoid

## Forces [F1 F2]

A vector of the force values at the two points on the force-stroke curve. The second measurement point must be at a stroke that is greater than that of the first measurement point. When the manufacturer doesn't provide a force-stroke curve, set F1 to the holding torque (when $\mathrm{X} 1=0$ ) and F 2 to the pull-in torque when running the solenoid at the Rated voltage Vdc and Rated current Ide values. The default value is [ 7.50 .75 ] N.

## Stroke [X1 X2]

A vector of the stroke (plunger distance from the fully closed position) values at the two points on the force-stroke curve. The second measurement point must be at a stroke that is greater than that of the first measurement point. To ensure a finite force value, the points must meet the condition

$$
\frac{X 2}{X 1}>\sqrt{\frac{F 1}{F 2}}
$$

The default value is [ $\left.\begin{array}{lll}1 & 5\end{array}\right] \mathrm{mm}$.

## Rated voltage Vdc

The voltage at which the solenoid is rated to operate. This voltage value is used to measure the Forces [F1 F2] and Stroke [X1 X2] values. The default value is 50 V .

## Rated current Idc

The current that flows when the solenoid is supplied with the Rated voltage Vdc voltage. The default value is 0.05 A .

## Mechanical Tab



## Solenoid

## Spring constant

Constant representing the stiffness of the spring that acts to retract the plunger when the solenoid is powered off. The force is zero when the plunger is displaced to the Stroke for zero spring force parameter value. The default value is $200 \mathrm{~N} / \mathrm{m}$. Set the spring constant to zero if there is no spring.

## Stroke for zero spring force

The stroke at which the spring provides no force. The default value is 5 mm .

## Damping

The term $\lambda$ in the equation of motion for the plunger as a function of position that linearly damps the plunger motion. The default value is $1 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$. The value can be zero.

## Plunger mass

The weight of the solenoid plunger. The default value is 0.05 kg . The value can be zero.

## Maximum stroke

The maximum amount by which the plunger can be displaced. You can use this parameter to model a hard endstop that limits the stroke. The default value is Inf mm , which means no stroke limit.

## Initial plunger position

The amount by which the plunger is displaced at the start of the simulation. The default value is 0 m .

## Contact stiffness

Stiffness of the plunger contact that models the hard stop at the minimum $(x=0)$ and maximum ( $x=$ Maximum stroke) plunger positions. The default value is $1 \mathrm{e}+06 \mathrm{~N} / \mathrm{m}$.

## Contact damping

Damping of the plunger contact that models the hard stop at the minimum $(x=0)$ and maximum ( $x=$ Maximum stroke) plunger positions. The default value is $500 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$.

Ports The block has the following ports:

## Solenoid

Positive electrical input.Negative electrical input.CMechanical translational conserving port.RMechanical translational conserving port.
References[1] S.E. Lyshevski. Electromechanical Systems, Electric Machines, andApplied MechatronicsCRC, 1999.

## SPDT Switch

Purpose Model single-pole double-throw switch
Library
Passive Devices/Switches
Description The SPDT Switch block models a single-pole double-throw switch:


- When the switch is closed, port c is connected to port s 2 .
- When the switch is open, port c is connected to port s 1 .

Closed connections are modeled by a resistor with value equal to the Closed resistance parameter value. Open connections are modeled by a resistor with value equal to the reciprocal of the Open conductance parameter value.

The switch is closed if the voltage presented at the vT control port exceeds the value of the Threshold parameter.
Optionally, you can add a delay between the point at which the voltage at vT passes the threshold and the switch opening or closing. To enable the delay, on the Dynamics tab, set the Model dynamics parameter to Model turn-on and turn-off times.

## SPDT Switch

## Dialog Box and Parameters

- "Main Tab" on page 1-629
- "Dynamics Tab" on page 1-630

Main Tab

## Block Parameters: SPDT Switch

## SPDT Switch

The block represents a Single-Pole Double-Throw (SPDT) switch controlled by an external control signal vT. . is greater than the threshold, then the switch is closed, otherwise the switch is open.

## Parameters

Main Dynamics

Closed resistance:
Open conductance:

0.01
$1 \mathrm{e}-6$

Ohm
S
Threshold:
0
V

Closed resistance
Resistance between the cand s electrical ports when the switch is closed. The value must be greater than zero. The default value is $0.01 \Omega$.

## Open conductance

Conductance between the c and s electrical ports when the switch is open. The value must be greater than zero. The default value is $1 \mathrm{e}-6 \mathrm{~S}$.

## SPDT Switch

## Threshold

The threshold voltage for the control physical signal input vT above which the switch will turn on. The default value is 0 V .

## Dynamics Tab

Block Parameters: SPDT Switch

## SPDT Switch

The block represents a Single-Pole Double-Throw (SPDT) switch controlled by an external control signal vT. If vT is greater than the threshold, then the switch is closed, otherwise the switch is open.

## Parameters

Main Dynamics
Model dynamics:
No dynamics

## Model dynamics

Select whether the block models a switching delay:

- No dynamics - Do not model the delay. This is the default option.
- Model turn-on and turn-off times - Use additional parameters to model a delay between the point at which the voltage at vT passes the threshold and the switch opening or closing.


## Turn-on delay

Time between the input voltage exceeding the threshold voltage and the switch closing. This parameter is only visible when you select Model turn-on and turn-off times for the Model dynamics parameter. The value must be greater than zero. The default value is $1 e-3$ seconds.

## Turn-off delay

Time between the input voltage falling below the threshold voltage and the switch opening. This parameter is only visible when you select Model turn-on and turn-off times for the Model dynamics parameter. The value must be greater than zero. The default value is $1 e-3$ seconds.

## Initial input value, vT

The value of the physical signal input vT at time zero. This value is used to initialize the delayed control voltage parameter internally. This parameter is only visible when you select Model turn-on and turn-off times for the Model dynamics parameter. The default value is 0 V .

Ports This block has the following ports:
vT
Physical signal that opens and closes the switch.
c, s1, s2
Electrical conserving ports.

See Also<br>DPDT Switch<br>DPST Switch<br>SPST Switch<br>Simscape Switch

## SPICE Diode

Purpose Model SPICE-compatible diode
Library SPICE-Compatible Components/Semiconductor Devices
Description The SPICE Diode block represents a SPICE-compatible diode.


The SPICE Diode block model includes the following components:

- "Current-Voltage Model" on page 1-632
- "Junction Charge Model" on page 1-634
- "Temperature Dependence" on page 1-635


## Current-Voltage Model

The block provides the following relationship between the diode current $I_{d}$ and the diode voltage $V_{d}$ after adjusting the applicable model parameters for temperature.

Applicable Range   of $\boldsymbol{V}_{\boldsymbol{d}}$ Values	Corresponding $\boldsymbol{I}_{\boldsymbol{d}}$ Equation
$V_{d}>80 * V_{t}$	$I_{d}=I S\left(\left(\frac{V_{d}}{V_{t}}-79\right) e^{80}-1\right)+V_{d} * G$ min
$80 * V_{t} \geq V_{d} \geq-3 * V_{t}$	$I_{d}=I S *\left(e^{V_{d} V_{t}}-1\right)+V_{d} * G$ min

## SPICE Diode

Applicable Range   of $\boldsymbol{V}_{\boldsymbol{d}}$ Values	Corresponding $\boldsymbol{I}_{\boldsymbol{d}}$ Equation
$-3^{*} V_{t}>V_{d} \geq-B V$	$I_{d}=-I S\left(1+\frac{27}{\left(V_{d} / V_{t}\right)^{3} e^{3}}\right)+V_{d} * G \min$
$V_{d}<-B V$	$I_{d}=-I B V^{*}\left(e^{\left(-\left(B V+V_{d}\right) / V_{t}\right.}-1\right)-$
$I S *\left(1-\left(\frac{3}{\left.e^{* B V / V_{t}}\right)}\right)^{3}\right)+V_{d} * G$ min	

Where:

- IS is the Saturation current, IS parameter value.
- $V_{t}=N^{*} k^{*} T / q$
- $N$ is the Emission coefficient, ND parameter value.
- $q$ is the elementary charge on an electron.
- $k$ is the Boltzmann constant.
- $T$ is the diode temperature:
- If you select Device temperature for the Model temperature dependence using parameter, $T$ is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.


## SPICE Diode

- If you select Fixed temperature for the Model temperature dependence using parameter, $T$ is the Fixed circuit temperature, TFIXED parameter value.
- GMIN is the diode minimum conductance. By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.
- $B V$ is the Reverse breakdown voltage, $\mathbf{B V}$ parameter value.


## Junction Charge Model

The block provides the following relationship between the diode charge $Q_{d}$ and the diode voltage $V_{d}$ after adjusting the applicable model parameters for temperature.

Applicable   Range of $\mathbf{V}_{\boldsymbol{d}}$   Values	Corresponding $\mathbf{Q}_{\boldsymbol{d}}$ Equation
$V_{d}<F C^{*} V J$	
$Q_{d}=T T^{*} I_{d}+C J O * V J * \frac{1-\left(1-\frac{V_{d}}{V J}\right)^{1-M G}}{1-M G}$	
$V_{d} \geq F C * V J$	$Q_{d}=T T^{*} I_{d}+$
$C J O *\left(F 1+\frac{F 3^{*}\left(V_{d}-F C * V J\right)+\left(\frac{M G}{2 * V J}\right) *\left(V_{d}^{2}-(F C * V J)^{2}\right)}{F 2}\right)$	

Where:

- $F C$ is the Capacitance coefficient FC parameter value.


## SPICE Diode

- VJ is the Junction potential VJ parameter value.
- $T T$ is the Transit time, TT parameter value.
- CJO is the Zero-bias junction capacitance CJ0 parameter value.
- $M G$ is the Grading coefficient MG parameter value.
- $F 1=V J *\left(1-(1-F C)^{(1-M G)}\right) /(1-M G)$
- $F 2=(1-F C)^{(1+M G)}$
- $F 3=1-F C^{*}(1+M G)$


## Temperature Dependence

Several diode parameters depend on temperature. There are two ways to specify the diode temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the diode temperature is

$$
T=T_{C}+T_{O}
$$

where:

- $T_{C}$ is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, $T_{C}$ is the default value of this parameter.
- $T_{O}$ is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the diode temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the saturation current $I S$ and the diode temperature $T$ :

## SPICE Diode

$$
I S(T)=I S *\left(T / T_{\text {meas }}\right)^{\frac{X T I}{N D}} * e^{\left(\frac{T}{T_{\text {meas }}}-1\right) \cdot \frac{E G}{V_{t}}}
$$

where:

- IS is the Transport saturation current, IS parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.
- XTI is the Saturation current temperature exponent, XTI parameter value.
- $N D$ is the Emission coefficient, ND parameter value.
- $E G$ is the Activation energy, EG parameter value.
- $V_{t}=k T / q$.

The block provides the following relationship between the junction potential $V J$ and the diode temperature $T$ :

$$
V J(T)=V J *\left(\frac{T}{T_{\text {meas }}}\right)-\frac{3 * k^{*} T}{q} * \log \left(\frac{T}{T_{\text {meas }}}\right)-\left(\frac{T}{T_{\text {meas }}}\right) * E G_{T_{\text {meas }}}+E G_{T}
$$

where:

- VJ is the Junction potential, VJ parameter value.
- $E G_{T_{\text {meas }}}=1.16 \mathrm{eV}-\left(7.02 e-4 * T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 e V-\left(7.02 e-4 * T^{2}\right) /(T+1108)$

The block provides the following relationship between the junction capacitance $C J O$ and the diode temperature $T$ :

## SPICE Diode

$$
C J O(T)=C J O *\left[1+M G *\left(400 e-6 *\left(T-T_{\text {meas }}\right)-\frac{V J(T)-V J}{V J}\right)\right]
$$

where CJO is the Zero-bias junction capacitance CJ0 parameter value.

## Basic Assumptions and Limitations

The model is based on the following assumptions:

- The SPICE Diode block does not support noise analysis.
- The SPICE Diode block applies initial conditions across junction capacitors and not across the block ports.


## SPICE Diode

## Dialog Box and Parameters

Main Tab


## Device area, AREA

The diode area. This value multiplies the Saturation current, IS, Zero-bias junction capacitance CJ0, and Reverse breakdown current, IBV parameter values. It divides the Ohmic resistance, RS parameter value. The default value is 1 $\mathrm{m}^{2}$. The value must be greater than 0 .

## Number of parallel devices, SCALE

The number of parallel diodes the block represents. This value multiplies the output current and device charges. The default value is 1 . The value must be greater than 0 .

## SPICE Diode

## Saturation current, IS

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. The default value is $1 \mathrm{e}-14 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Ohmic resistance, RS

The series diode connection resistance. The default value is 0.01 $\mathrm{m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

## Emission coefficient, ND

The diode emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

## Junction Capacitance Tab



## SPICE Diode

## Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.
- Yes - Specify zero-bias junction capacitance, junction potential, grading coefficient, forward-bias depletion capacitance coefficient, and transit time.


## Zero-bias junction capacitance CJO

The value of the capacitance placed in parallel with the exponential diode term. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Junction potential VJ

The junction potential. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 1 V . The value must be greater than 0.01 V .

## Grading coefficient MG

The grading coefficient. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be greater than 0 and less than 0.9.

## Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be greater than or equal to 0 and less than 0.95 .

## Transit time, TT

The transit time of the minority carriers that cause diffusion capacitance. This parameter is only visible when you select Yes

## SPICE Diode

for the Model junction capacitance parameter. The default value is 0 s . The value must be greater than or equal to 0 .

## Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial diode voltage.

Note The SPICE Diode block applies the initial diode voltage across the junction capacitors and not across the ports.

## Initial voltage V0

Diode voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

Note The block applies the initial condition across the diode junction, so the initial condition is only effective when charge storage is included, i.e. when one or both of the Zero-bias junction capacitance CJ0 and Transit time, TT parameters are greater than zero.

## SPICE Diode

## Reverse Breakdown Tab



## Model reverse breakdown

Select one of the following options for modeling the diode reverse breakdown:

- No - Don't model reverse breakdown. This is the default option.
- Yes - Introduce a second exponential term to the diode I-V relationship, thereby modeling a rapid increase in conductance as the breakdown voltage is exceeded.


## SPICE Diode

## Reverse breakdown current, IBV

The diode current that corresponds to the Reverse breakdown voltage, BV value. This parameter is only visible when you select Yes for the Model reverse breakdown parameter. The default value is $0.001 \mathrm{~A} / \mathrm{m}_{2}$. The value must be greater than 0 .

Note The Diode model does not use this parameter at this time.

## Reverse breakdown voltage, BV

The voltage below which to model the rapid increase in conductance that occurs at diode breakdown. This parameter is only visible when you select Yes for the Model reverse breakdown parameter. The default value is Inf V. The value must be greater than or equal to 0 .

## SPICE Diode

## Temperature Tab



## Model temperature dependence using

Select one of the following options for modeling the diode temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature parameter value (from the SPICE Environment Parameters block, if one exists in the circuit, or the default value for this block otherwise) plus the Offset local circuit temperature, TOFFSET parameter value.
- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.


## SPICE Diode

## Saturation current temperature exponent, XTI

The order of the exponential increase in the saturation current as temperature increases. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 3 . The value must be greater than 0.

## Activation energy, EG

The diode activation energy. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 1.11 eV . The value must be greater than or equal to 0.1.

## Offset local circuit temperature, TOFFSET

The amount by which the diode temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

## Parameter extraction temperature, TMEAS

The temperature at which the diode parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

## Fixed circuit temperature, TFIXED

The temperature at which to simulate the diode. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0 .

## Ports The block has the following ports:

$+$
Positive electrical voltage.

Negative electrical voltage.

## See Also <br> Diode

## SPICE Environment Parameters

Purpose Set parameters that apply to all connected SPICE-compatible blocks<br>Library<br>SPICE-Compatible Components/Utilities<br>Description The SPICE Environment Parameters block lets you set parameters that apply to all SPICE-compatible blocks in an electrical network:<br><br>- Circuit temperature<br>- Minimum conductance<br>If your Simulink model does not contain a SPICE Environment Parameters block, all blocks use the default values of these parameters. You must connect every network in the system to a SPICE Environment Parameters block to override the default values.

Note The simple semiconductor models in the Semiconductors sublibrary are not temperature dependent, so the SPICE Environment Parameters block only changes the minimum conductance parameter used by the exponential diode and bipolar transistor models.

## SPICE Environment Parameters

## Dialog Box and Parameters

## Ports The block has the following ports:

OUT
Electrical output.

## SPICE NJFET

## Purpose Model SPICE-compatible N-Channel JFET <br> Library <br> SPICE-Compatible Components/Semiconductor Devices <br> Description The NJFET block represents a SPICE-compatible N-channel JFET. <br>  <br> The NJFET block model includes the following components: <br> - "Gate-Source Current-Voltage Model" on page 1-648 <br> - "Gate-Drain Current-Voltage Model" on page 1-649 <br> - "Drain-Source Current-Voltage Model" on page 1-650 <br> - "Junction Charge Model" on page 1-651 <br> - "Temperature Dependence" on page 1-653 <br> Gate-Source Current-Voltage Model

The block provides the following relationship between the gate-source current $I_{g s}$ and the gate-source voltage $V_{g s}$ after adjusting the applicable model parameters for temperature.

Applicable Range of   $\boldsymbol{V}_{g s}$ Values	Corresponding $\mathbf{I}_{\boldsymbol{g s}}$ Equation
$V_{g s}>80 * V_{t}$	$I_{g s}=I S *\left(\left(\frac{V_{g s}}{V_{t}}-79\right) e^{80}-1\right)+V_{g s} * G$ min
$80 * V_{t} \geq V_{g s}$	$I_{g s}=I S *\left(e^{V_{s s} / V_{t}}-1\right)+V_{g s} * G$ min

Where:

- IS is the Saturation current, IS parameter value.
- $V_{t}=N D * k * T / q$
- $N D$ is the Emission coefficient, ND parameter value.


## SPICE NJFET

- $q$ is the elementary charge on an electron.
- $k$ is the Boltzmann constant.
- $T$ is the diode temperature:
- If you select Device temperature for the Model temperature dependence using parameter, $T$ is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- If you select Fixed temperature for the Model temperature dependence using parameter, $T$ is the Fixed circuit temperature, TFIXED parameter value.
- GMIN is the diode minimum conductance. By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.


## Gate-Drain Current-Voltage Model

The block provides the following relationship between the gate-drain current $I_{g d}$ and the gate-drain voltage $V_{g d}$ after adjusting the applicable model parameters for temperature.

Applicable Range of   $\mathbf{V}_{\mathbf{g d}}$ Values	Corresponding $\mathbf{I}_{\text {gd }}$ Equation
$V_{g d}>80 * V_{t}$	$I_{g d}=I S *\left(\left(\frac{V_{g d}}{V_{t}}-79\right) e^{80}-1\right)+V_{g d} * G$ min
$80 * V_{t} \geq V_{g d}$	$I_{g d}=I S *\left(e^{V_{g d} / V_{t}}-1\right)+V_{g d} * G$ min

## SPICE NJFET

## Drain-Source Current-Voltage Model

The block provides the following relationship between the drain-source current $I_{d s}$ and the drain-source voltage $V_{d s}$ in normal mode ( $V_{d s} \geq 0$ ) after adjusting the applicable model parameters for temperature.

Applicable   Range of $\boldsymbol{V}_{\boldsymbol{g s}}$   and $\boldsymbol{V}_{\mathbf{g d}}$ Values	Corresponding $I_{d s}$ Equation
$V_{g s}-V_{t o} \leq 0$	$I_{d s}=0$
$0<V_{g s}-V_{t o} \leq V_{d s}$	$I_{d s}=\beta\left(V_{g s}-V_{t o}\right)^{2}\left(1+\lambda V_{d s}\right)$
$0<V_{d s}<V_{g s}-V_{t o}$	$I_{d s}=\beta V_{d s}\left(2\left(V_{g s}-V_{t o}\right)-V_{d s}\right)\left(1+\lambda V_{d s}\right)$

## Where:

- $V_{t o}$ is the Threshold voltage, VTO parameter value.
- $\beta$ is the Transconductance, BETA parameter value.
- $\lambda$ is the Channel modulation, LAMBDA parameter value.

The block provides the following relationship between the drain-source current $I_{d s}$ and the drain-source voltage $V_{d s}$ in inverse mode ( $V_{d s}<0$ ) after adjusting the applicable model parameters for temperature.

## SPICE NJFET

Applicable   Range of $\boldsymbol{V}_{\text {gs }}$   and $\boldsymbol{V}_{\text {gd }}$ Values	Corresponding $I_{\mathbf{d s}}$ Equation
$V_{g d}-V_{t o} \leq 0$	$I_{d s}=0$
$0<V_{g d}-V_{t o} \leq-V_{d s}$	$I_{d s}=-\beta\left(V_{g d}-V_{t o}\right)^{2}\left(1-\lambda V_{d s}\right)$
$0<-V_{d s}<V_{g s}-V_{t o}$	$I_{d s}=\beta V_{d s}\left(2\left(V_{g d}-V_{t o}\right)+V_{d s}\right)\left(1-\lambda V_{d s}\right)$

## Junction Charge Model

The block provides the following relationship between the gate-source charge $Q_{g s}$ and the gate-source voltage $V_{g s}$ after adjusting the applicable model parameters for temperature.

Applicable   Range of $\mathbf{V}_{\mathbf{g s}}$   Values	Corresponding $\mathbf{Q}_{\mathbf{g s}}$ Equation
$V_{g s}<F C * V J$	
$V_{g s} \geq F C * V J$	$\left.Q_{g s}=\frac{C G S * V J *\left(1-\left(1-\frac{V_{g s}}{V J}\right)^{1-M G}\right)}{1-M G}\right)$

Where:

## SPICE NJFET

- $F C$ is the Capacitance coefficient FC parameter value.
- VJ is the Junction potential VJ parameter value.
- CGS is the Zero-bias GS capacitance, CGS parameter value.
- $M G$ is the Grading coefficient, MG parameter value.
- $F 1=\frac{V J *\left(1-(1-F C)^{1-M G}\right)}{1-M G}$
- $F 2=(1-F C)^{1+M G}$
- $F 3=1-F C *(1+M G)$

The block provides the following relationship between the gate-drain charge $Q_{g d}$ and the gate-drain voltage $V_{g d}$ after adjusting the applicable model parameters for temperature.

Applicable   Range of $\boldsymbol{V}_{\text {gd }}$   Values	Corresponding $\mathbf{Q}_{\text {gd }}$ Equation
$V_{g d}<F C^{*} V J$	$\left.Q_{g d}=\frac{C G D^{* V J} *\left(1-\left(1-\frac{V_{g d}}{V J}\right)^{1-M G}\right)}{1-M G}\right)$
$V_{g d} \geq F C^{*} V J$	$Q_{g d}=C G D^{*}\left(F 1+\frac{F 3^{*}\left(V_{g d}-F C^{*} V J\right)+\frac{M G *\left(V_{g d}^{2}-\left(F C^{*} V J\right)^{2}\right)}{2 * V J}}{F 2}\right)$

Where:

## SPICE NJFET

- CGD is the Zero-bias GD capacitance, CGD parameter value.


## Temperature Dependence

Several transistor parameters depend on temperature. There are two ways to specify the transistor temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the transistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- $T_{C}$ is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, $T_{C}$ is the default value of this parameter.
- $T_{O}$ is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the transistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the saturation current $I S$ and the transistor temperature $T$ :

$$
I S(T)=I S *\left(T / T_{\text {meas }}\right)^{\frac{X T I}{N D}} * e^{\left(\frac{T}{T_{\text {meas }}}-1\right) * \frac{E G}{V_{t}}}
$$

where:

- IS is the Saturation current, IS parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.
- XTI is the Saturation current temperature exponent, XTI parameter value.
- $E G$ is the Energy gap, EG parameter value.


## SPICE NJFET

- $V_{t}=N D * k * T / q$
- $N D$ is the Emission coefficient, ND parameter value.

The block provides the following relationship between the junction potential $V J$ and the transistor temperature $T$ :

$$
V J(T)=V J *\left(\frac{T}{T_{\text {meas }}}\right)-\frac{3 * k * T}{q} * \log \left(\frac{T}{T_{\text {meas }}}\right)-\left(\frac{T}{T_{\text {meas }}}\right) * E G_{T_{\text {mess }}}+E G_{T}
$$

where:

- VJ is the Junction potential VJ parameter value.
- $E G_{T_{\text {meas }}}=1.16 \mathrm{eV}-\left(7.02 e-4 * T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 e V-\left(7.02 e-4 * T^{2}\right) /(T+1108)$

The block provides the following relationship between the gate-source junction capacitance $C G S$ and the transistor temperature $T$ :

$$
C G S(T)=C G S *\left[1+M G *\left(400 e-6 *\left(T-T_{\text {meas }}\right)-\frac{V J(T)-V J}{V J}\right)\right]
$$

where:

- $C G S$ is the Zero-bias GS capacitance, CGS parameter value.

The block uses the $C G S(T)$ equation to calculate the gate-drain junction capacitance by substituting $C G D$ (the Zero-bias GD capacitance, CGD parameter value) for $C G S$.

The block provides the following relationship between the forward and reverse beta and the transistor temperature $T$ :

$$
\beta(T)=\beta *\left(\frac{T}{T_{\text {meas }}}\right)
$$

where $\beta$ is the Transconductance, BETA parameter value.

Basic
Assumptions and
Limitations

The model is based on the following assumptions:

- The NJFET block does not support noise analysis.
- The NJFET block applies initial conditions across junction capacitors and not across the block ports.

Main Tab

Block Parameters: SPICE NJFET				
SPICE NJFET				
This model approximates a SPICE N-channel JFET. You specify both model card and instance parameters as instance parameters on this mask. The instance parameter OFF and noise model parameters KF and AF are not supported. Additional instance parameters are SCALE, TOFFSET, ND, MG, XTI and EG.				
SCALE is the number of parallel JFET instances for this device. SCALE multiplies the output current and device charge directly. This differs from the AREA parameter, which multiples the device parameters BETA, IS, CGS, CGD, and divides RS and RD.				
You can set the JFET temperature to a fixed temperature or to the circuit temperature (from the SPICE Environment Parameters block) plus TOFFSET. The parameters ND, MG, XTI and EG adjust temperature sensitive parameters.				
The block lets you include or exclude capacitance modeling and initial conditions. The capacitance modeling uses the published temperature equations, which may yield a slightly different value than SPICE for capacitance. The initial conditions ICVDS and ICVGS are the voltages across the internal junctions, and are only effective when the corresponding junction capacitances are present.				
Parameters				
Main	Junction Capacitance \|	Temperature		
Device	rea, AREA:	1	$\mathrm{m}^{\wedge} 2$	$\square$
Numb	of parallel devices, SCALE	1		
Thresh	d voltage, vTO:	-2		$\square$
Trans	ductance, BETA :	1e-4	A/m^2/V^2	$\square$
Chann	modulation, LAMBDA:	0	1/V	$\nabla$
Satur	on current, IS:	1e-14	A/m^2	$\square$
Emissi	coefficient, ND:	1		
Sourc	esistance, RS:	1e-4	$\mathrm{m}^{\wedge} 2^{*} \mathrm{Ohm}$	$\square$
Drain	sistance, RD:	0.01	m^2*Ohm	$\nabla$

This model approximates a SPICE N-channel JFET. You specify both model card and instance parameters as instance parameters on this mask. The instance parameter OFF and noise model parameters KF and AF are not supported. Additional instance parameters are

SCALE is the number of parallel JFET instances for this device. SCALE multiplies the output current and device charge directly. This differs from the AREA parameter, which multiples the device parameters BETA, IS, CGS, CGD, and divides RS and RD. plus TOFFSET. The parameters $\mathrm{ND}, \mathrm{MG}, \mathrm{XTI}$ and EG adjust temperature sensitive parameters.

The block lets you include or exclude capacitance modeling and initial conditions. The capacitance modeling uses the published are the voltages across the internal junctions, and are only effective when the corresponding junction capacitances are present.


## Device area, AREA

The transistor area. This value multiplies the Transconductance, BETA, Zero-bias GS capacitance, CGS, Zero-bias GD capacitance, CGD, and Saturation current, IS parameter values. It divides the Source resistance, RS and Drain resistance, RD parameter values. The default value is 1 $\mathrm{m}^{2}$. The value must be greater than 0 .

## SPICE NJFET

## Number of parallel devices, SCALE

The number of parallel transistors the block represents. This value multiplies the output current and device charges. The default value is 1 . The value must be greater than 0 .

## Threshold voltage, VTO

The gate-source voltage above which the transistor produces a nonzero drain current. The default value is -2 V .

## Transconductance, BETA

The derivative of drain current with respect to gate voltage. The default value is $1 \mathrm{e}-04 \mathrm{~A} / \mathrm{m}^{2} / \mathrm{V}^{2}$. The value must be greater than or equal to 0 .

## Channel modulation, LAMBDA

The channel-length modulation. The default value is $01 / \mathrm{V}$.

## Saturation current, IS

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. The default value is $1 \mathrm{e}-14 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Emission coefficient, ND

The transistor emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

## Source resistance, RS

The transistor source resistance. The default value is $1 \mathrm{e}-4 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

## Drain resistance, RD

The transistor drain resistance. The default value is $0.01 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

## SPICE NJFET

## Junction Capacitance Tab



## Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.


## SPICE NJFET

- Yes - Specify zero-bias junction capacitance, junction potential, grading coefficient, forward-bias depletion capacitance coefficient, and transit time.


## Zero-bias GS capacitance, CGS

The value of the capacitance placed between the gate and the source. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 $\mathrm{F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Zero-bias GD capacitance, CGD

The value of the capacitance placed between the gate and the drain. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 $\mathrm{F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Junction potential VJ

The junction potential. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 1 V . The value must be greater than 0.01 V .

## Grading coefficient, MG

The transistor grading coefficient. The default value is 0.5 . The value must be greater than 0 and less than 0.9 .

## Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be greater than or equal to 0 and less than or equal to 0.95 .

## Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial diode voltage.


## SPICE NJFET

Note The NJFET block applies the initial diode voltage across the junction capacitors and not across the ports.

## Initial condition voltage ICVDS

Drain-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

## Initial condition voltage ICVGS

Gate-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

## Temperature Tab



## Model temperature dependence using

Select one of the following options for modeling the diode temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature value plus the Offset local circuit temperature, TOFFSET value. The Circuit temperature value comes from the SPICE Environment Parameters block, if


## SPICE NJFET

one exists in the circuit. Otherwise, it comes from the default value for this block.

- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.


## Saturation current temperature exponent, XTI

The order of the exponential increase in the saturation current as temperature increases. The default value is 0 . The value must be greater than or equal to 0 .

## Activation energy, EG

The energy gap that affects the increase in the saturation current as temperature increases. The default value is 1.11 eV . The value must be greater than 0.1 eV .

## Offset local circuit temperature, TOFFSET

The amount by which the transistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

## Fixed circuit temperature, TFIXED

The temperature at which to simulate the transistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0.

## Parameter extraction temperature, TMEAS

The temperature at which the transistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

## Ports <br> The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

## SPICE NJFET

D
Electrical conserving port associated with the transistor drain terminal.

Electrical conserving port associated with the transistor source terminal.

References [1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 3.

See Also N-Channel JFET, SPICE PJFET

## SPICE NMOS

Purpose	Model SPICE-compatible N-Channel MOSFET		
Library	SPICE-Compatible Components/Semiconductor Devices		
Description $0-15_{L_{0}^{0}}^{0}$	The NMOS block rep The NMOS block mod   - "Resistance Calcul   - "Bulk-Source Diod   - "Bulk-Drain Diode   - "Level 1 Drain Cu   - "Level 3 Drain Cu   - "Junction Charge   - "Temperature Dep   Resistance Calculd   The following table sh drain resistance. The the following block pa   - Drain resistance   - Sheet resistance   - Number of drain	ents a SPICE-compa includes the followin ns" on page 1-664 Todel" on page 1-665 odel" on page 1-666 t Model" on page 1t Model" on page 1del" on page 1-676 dence" on page 1-681 ns   s how the NMOS blo breviations in the ta meters:   D   SH   uares, NRD	e N-channel MOSFET. omponents:   calculates the transistor represent the values of
	Drain resistance, RD Parameter	Sheet resistance, RSH Parameter	Drain Resistance
	NaN	NaN	0
	$R D$	NaN or RSH	RD
	NaN	RSH	$R S H^{*} N R D$

## SPICE NMOS

The following table shows how the NMOS block calculates the transistor source resistance. The abbreviations in the table represent the values of the following block parameters:

- Source resistance, RS
- Sheet resistance, RSH
- Number of source squares, NRS

Source resistance,   RS Parameter	Sheet resistance,   RSH Parameter	Source Resistance
NaN	NaN	0
$R S$	NaN or $R S H$	$R S$
NaN	$R S H$	$R S H^{*} N R S$

## Bulk-Source Diode Model

The block provides the following relationship between the bulk-source current $I_{b s}$ and the bulk-source voltage $V_{b s}$ after adjusting the applicable model parameters for temperature.

Applicable Range   of $\boldsymbol{V}_{b s}$ Values	Corresponding $\mathbf{I}_{\mathbf{g s}}$ Equation
$V_{b s}>80 * V_{t n}$	$I_{b s}=I S_{b s} *\left(\left(\frac{V_{b s}}{V_{t n}}-79\right) e^{80}-1\right)+V_{b s} * G$ min
$80 V_{t n} \geq V_{b s}$	$I_{b s}=I S_{b s} *\left(e^{V_{b s} / V_{n t}}-1\right)+V_{b s} * G$ min

Where:

- $I S_{b s}$ is
- The product of the Bulk jet sat current density, JS parameter value and the Area of source, AS parameter value if both these


## SPICE NMOS

parameter values and the Area of drain, AD parameter value are nonzero.

- The Bulk saturation current, IS parameter value, otherwise.
- $V_{t n}=N k T / q$
- $q$ is the elementary charge on an electron, $1.6021918 \mathrm{e}-19 \mathrm{C}$.
- $N$ is the Emission coefficient, ND parameter value.
- $k$ is the Boltzmann constant.
- $T$ is the diode temperature:
- If you select Device temperature for the Model temperature dependence using parameter, $T$ is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- If you select Fixed temperature for the Model temperature dependence using parameter, $T$ is the Fixed circuit temperature, TFIXED parameter value.
- GMIN is the diode minimum conductance. By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.


## Bulk-Drain Diode Model

The block provides the following relationship between the bulk-drain current $I_{b d}$ and the bulk-drain voltage $V_{b d}$ after adjusting the applicable model parameters for temperature.

## SPICE NMOS

Applicable Range   of $\boldsymbol{V}_{b s}$ Values	Corresponding $\boldsymbol{I}_{\mathbf{g s}}$ Equation
$V_{b d}>80 * V_{t n}$	$I_{b d}=I S_{b d} *\left(\left(\frac{V_{b d}}{V_{t n}}-79\right) e^{80}-1\right)+V_{b d} * G$ min
$80 V_{t n} \geq V_{b d}$	$I_{b d}=I S_{b d} *\left(e^{V_{b d} / V_{m n}}-1\right)+V_{b d} * G \min$

Where:

- $I S_{b d}$ is
- The product of the Bulk jct sat current density, JS parameter value and the Area of drain, AD parameter value if both these parameter values and the Area of source, AS parameter value are nonzero.
- The Bulk saturation current, IS parameter value, otherwise.


## Level 1 Drain Current Model

The block provides the following relationship between the drain current
$I_{d}$ and the drain-source voltage $V_{d s}$ in normal mode ( $V_{d s} \geq 0$ ) after adjusting the applicable model parameters for temperature.

## SPICE NMOS

## Normal Mode

Applicable   Range of $\boldsymbol{V}_{\text {gs }}$   and $\boldsymbol{V}_{d s}$ Values	Corresponding $\boldsymbol{I}_{\boldsymbol{d}}$ Equation
$V_{g s}-V_{o n} \leq 0$	$I_{d}=0$
$0<V_{g s}-V_{o n} \leq V_{d s}$	$I_{d}=B E T A *\left(V_{g s}-V_{o n}\right)^{2} \frac{\left(1+L A M B D A * V_{d s}\right)}{2}$
$0<V_{d s}<V_{g s}-V_{o n}$	$I_{d}=B E T A *$   $V_{d s}\left(\left(V_{g s}-V_{o n}\right)-\frac{V_{d s}}{2}\right)\left(1+L A M B D A * V_{d s}\right)$

## Where:

- $V_{o n}$ is:
- $M T Y P E * V B I+G A M M A \sqrt{P H I-V_{b s}}$ if $V_{b s} \leq 0$.
- $M T Y P E^{*} V B I+G A M M A\left(\sqrt{P H I}-\frac{V_{b s}}{2 \sqrt{P H I}}\right)$ if $0<V_{b s} \leq 2 * P H I$.
- MTYPE*VBI if $V_{b s}>2^{*} P H I$.
- MTYPE is 1.
- BETA is $K P^{*}$ WIDTH/(LENGTH-2*LD)
- $K P$ is:
- The Transconductance, KP parameter value, if this parameter has a numerical value.


## SPICE NMOS

- U0*3.9* $\varepsilon_{0} / T O X$, if Transconductance, KP is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- WIDTH is the Width of channel, WIDTH parameter value.
- LENGTH is the Length of channel, LENGTH parameter value.
- $L D$ is the Lateral diffusion, LD parameter value.
- $V B I$ is an built-in voltage value the block uses in calculations. The value is a function of temperature. For a detailed definition, see "Temperature Dependence" on page 1-681.
- PHI is:
- The Surface potential, PHI parameter value, if this parameter has a numerical value.
- $2 * k T_{\text {meas }} / q * \log \left(N S U B / n_{i}\right)$, if Surface potential, PHI is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- $L A M B D A$ is the Channel modulation, LAMBDA parameter value.
- GAMMA is:
- The Bulk threshold, GAMMA parameter value, if this parameter has a numerical value.
- TOX $* \sqrt{2 * 11.7 * \varepsilon_{0} * q^{*} N S U B} /\left(3.9 * \varepsilon_{0}\right)$, if Bulk threshold, GAMMA is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- $\varepsilon_{0}$ is the permittivity of free space, $8.854214871 \mathrm{e}-12 \mathrm{~F} / \mathrm{m}$.
- $n_{i}$ is the carrier concentration of intrinsic silicon, $1.45 \mathrm{e}^{10} \mathrm{~cm}^{-3}$.

The block provides the following relationship between the drain current
$I_{d}$ and the drain-source voltage $V_{d s}$ in inverse mode ( $V_{d s}<0$ ) after adjusting the applicable model parameters for temperature.

## SPICE NMOS

## Inverse Mode

Applicable   Range of $\boldsymbol{V}_{\text {gd }}$   and $\boldsymbol{V}_{d s}$ Values	Corresponding $\boldsymbol{I}_{\boldsymbol{d}}$ Equation
$V_{g d}-V_{o n} \leq 0$	$I_{d}=0$
$0<V_{g d}-V_{o n} \leq-V_{d s}$	$I_{d}=-B E T A\left(V_{g d}-V_{o n}\right)^{2}\left(1-L A M B D A * V_{d s}\right) / 2$
$0<V_{d s}<V_{g d}-V_{o n}$	$I_{d}=B E T A *$   $V_{d s}\left(\left(V_{g d}-V_{o n}\right)+V_{d s} / 2\right)\left(1-L A M B D A * V_{d s}\right)$

## Where:

- $V_{o n}$ is:
- MTYPE *VBI +GAMMA $\sqrt{P H I-V_{b d}}$ if $V_{b d} \leq 0$.
- $M T Y P E * V B I+G A M M A\left(\sqrt{P H I}-\frac{V_{b d}}{2 \sqrt{P H I}}\right)$ if $0<V_{b d} \leq 2 * P H I$.
- MTYPE*VBI if $V_{b d}>2^{*}$ PHI.


## Level 3 Drain Current Model

The block provides the following model for drain current $I_{d s}$ in normal mode ( $V_{d s} \geq 0$ ) after adjusting the applicable model parameters for temperature.

$$
I_{D S}=I_{D S 0} * \text { Scale }_{\text {VMAX }} * \text { Scale }_{\text {LChan }} * \text { Scale }_{\text {INV }}
$$

Where:

- $I_{D S O}$ is the Basic Drain Current Model.


## SPICE NMOS

- Scale ${ }_{V M A X}$ is the Velocity Saturation Scaling.
- Scale ${ }_{\text {LChan }}$ is the Channel Length Modulation Scaling.
- Scale ${ }_{I N V}$ is the Weak Inversion Scaling.

The blocks uses the same model for drain current in inverse mode
( $V_{d s}<0$ ), with the following substitutions:

- $V_{b s}-V_{d s}$ for $V_{b s}$
- $V_{g s}-V_{d s}$ for $V_{d s}$
- $-V_{d s}$ for $V_{d s}$


## Basic Drain Current Model

The block provides the following relationship between the drain current $I_{d s}$ and the drain-source voltage $V_{d s}$ :

$$
I_{D S 0}=B E T A * F_{g a t e} *\left(V_{G S X}-V_{T H}-\frac{1+F_{B}}{2} * V_{D S X}\right) * V_{D S X}
$$

- The block calculates BETA as described in "Level 1 Drain Current Model" on page 1-667.
- The block calculates $F_{G A T E}$ using the following equation:

$$
F_{g a t e}=\frac{1}{1+T H E T A *\left(V_{g s X}-V_{T H}\right)}
$$

- THETA is the Vgs dependence on mobility, THETA parameter value.
- $V_{g s x}=\max \left(V_{G S}, V_{o n}\right)$
- If you specify a nonzero value for the Fast surface state density, NFS parameter, the block calculates $V_{o n}$ using the following equation:


## SPICE NMOS

$$
V_{o n}=V_{T H}+x_{n} V_{T}
$$

Otherwise, $V_{o n}=V_{T H}$.

- The block calculates $x_{n}$ using the following equation:

$$
x_{n}=1+\frac{q * N F S}{C O X}+\frac{\left(G A M M A * F_{s} * \sqrt{V_{\text {bulk }}}+\frac{F_{n} * V_{\text {bulk }}}{\text { WIDTH }}\right)}{2 * V_{\text {bulk }}}
$$

- The block calculates $V_{\text {bulk }}$ as follows:
- If $V_{B S} \leq 0, V_{b u l k}=\mathrm{PHI}-V_{B S}$.
- Otherwise, the block calculates $V_{\text {bulk }}$ using the following equation:

$$
V_{\text {bulk }}=\frac{P H I}{\left(1+\frac{V_{B S}}{2 * P H I}\right)^{2}}
$$

- $V_{T}=k T / q$
- The block calculates $V_{T H}$ using the equation following equation:

$$
\begin{aligned}
V_{T H}= & V_{B I}-\frac{8.15 e^{-22} * E T A}{C O X *(L E N G T H-2 * L D)^{3}} * V_{D S} \\
& +G A M M A * F_{s} * \sqrt{V_{b u l k}}+F_{n} * V_{b u l k}
\end{aligned}
$$

- For information about how the block calculates $V_{B I}$, see "Temperature Dependence" on page 1-681.
- ETA is the Vds dependence threshold volt, ETA parameter value.
- $C O X=\varepsilon_{o x} / T O X$, where $\varepsilon_{o x}$ is the permittivity of the oxide and TOX is the Oxide thickness, TOX parameter value.


## SPICE NMOS

- If you specify a nonzero value for the Junction depth, XJ parameter and a value for the Substrate doping, NSUB parameter, the block calculates $F_{s}$ using the following equations:

$$
\begin{aligned}
\alpha= & \frac{2 \varepsilon_{s i}}{q N S U B} \\
X D= & \sqrt{\alpha} \\
w c= & .0631353+.8013292 * \frac{X D^{*} \sqrt{V_{\text {bulk }}}}{X J} \\
& -.01110777 *\left(\frac{X D^{*} \sqrt{V_{\text {bulk }}}}{X J}\right)^{2}+\frac{L D}{X J} \\
F_{s}= & 1-\left(w c^{*} \sqrt{1-\left(\frac{X D^{*} \sqrt{V_{\text {bulk }}}}{X J+X D^{*} \sqrt{V_{b u l k}}}\right)^{2}}-\frac{L D}{X J}\right)
\end{aligned}
$$

where $\varepsilon_{s i}$ is the permittivity of silicon.
Otherwise, $F_{s}=1$.

- The block calculates $F_{B}$ using the following equation:

$$
F_{B}=\frac{G A M M A * F_{s}}{4^{*} \sqrt{V_{\text {bukk }}}}+F_{n}
$$

- The block calculates $F_{n}$ using the following equation:

$$
F_{n}=\frac{D E L T A * \pi * \varepsilon_{s i}}{2 * C O X * W I D T H}
$$

- DELTA is the Width effect on threshold, DELTA parameter value.


## SPICE NMOS

- $V_{D S X}$ is the lesser of $V_{D S}$ and the saturation voltage, $V_{d s a t}$.
- If you specify a positive value for the Max carrier drift velocity, VMAX parameter, the block calculates $V_{d s a t}$ using the following equation:

$$
\begin{aligned}
V_{d s a t}= & \frac{V_{g s x}-V_{T H}}{1+F_{B}}+\frac{(L E N G T H-2 * L D) * V M A X}{U O * F_{g a t e}} \\
& -\sqrt{\left(\frac{V_{g s x}-V_{T H}}{1+F_{B}}\right)^{2}+\left(\frac{(L E N G T H-2 * L D) * V M A X}{U O * F_{g a t e}}\right)^{2}}
\end{aligned}
$$

Otherwise, the block calculates $V_{\text {dsat }}$ using the following equation:

$$
V_{d s a t}=\frac{V_{g s x}-V_{T H}}{1+F_{B}}
$$

## Velocity Saturation Scaling

If you specify a positive value for the Max carrier drift velocity, VMAX parameter, the block calculates Scale ${ }_{\text {VMAX }}$ using the following equation:

$$
\text { Scale }_{V M A X}=\frac{1}{1+\frac{U O^{*} F_{\text {gate }}}{(L E N G T H-2 * L D) * V M A X} * V_{D S X}}
$$

Otherwise, Scale $_{\text {VMAX }}=1$.

## Channel Length Modulation Scaling

The block scales the drain current to account for channel length modulation if the block meets all of the following criteria:

- $V_{D S}>V_{s a t}$


## SPICE NMOS

- The Max carrier drift velocity, VMAX parameter value is zero or $a$ is nonzero.

The block scales the drain current using the following equation:

$$
\text { Scale }_{\text {LChan }}=\frac{1}{1-\frac{\Delta l}{\left(L E N G T H-2^{*} L D\right)}}
$$

The block uses the following procedure to calculate $\Delta l$ :
1 The block first calculates the intermediate value $\Delta l_{0}$.

- If you specify a positive value for the Max carrier drift velocity, VMAX parameter, the block computes the intermediate value $g_{d s a t}$ as the greater of $1 \mathrm{e}-12$ and the result of the following equation:

$$
I_{D S O} *\left(1-\frac{1}{1+\text { Scale }_{g_{\text {dost }}} * V_{D S X}}\right) * \text { Scale }_{g_{\text {dsat }}}
$$

where:

$$
\text { Scale }_{g_{\text {dost }}}=\frac{U O * F_{\text {gate }}}{(L E N G T H-2 * L D) * V M A X}
$$

Then, the block uses the following equation to calculate the intermediate value $\Delta l_{0}$ :

$$
\begin{aligned}
\Delta l_{0}= & \sqrt{\left(\frac{K A^{*} I_{D S}}{2 *(L E N G T H-2 * L D) * g_{d s a t}}\right)^{2}+K A^{*}\left(V_{D S}-V_{d s a t}\right)} \\
& -\frac{K A^{*} I_{D S}}{2 *(L E N G T H-2 * L D) * g_{d s a t}}
\end{aligned}
$$

## SPICE NMOS

where $K A$ is the product of the Mobility modulation, KAPPA parameter value and $a$.

- Otherwise, the block uses the following equation to calculate the intermediate value $\Delta l_{0}$ :

$$
\Delta l=\sqrt{K A *\left(V_{D S}-V_{d s a t}\right)}
$$

2 The block checks for punch through and calculates $\Delta l$.

- If $\Delta l_{0}$ is greater than $\left(L E N G T H-2^{*} L D\right) / 2$, the block calculates $\Delta l$ using the following equation:

$$
\Delta l=\left(1-\frac{(L E N G T H-2 * L D)}{4 * \Delta l_{0}}\right) *(\text { LENGTH }-2 * L D)
$$

- Otherwise, $\Delta l=\Delta l_{0}$.


## Weak Inversion Scaling

If $V_{G S}$ is less than $V_{o n}$, the block calculates Scale $_{I N V}$ using the following equation:

$$
\text { Scale }_{I N V}=e^{\frac{V_{g}-V_{o n}}{x_{n} v_{T}}}
$$

Otherwise, scale $_{\text {INV }}=1$.

## Junction Charge Model

The block models the following junction charges:

- Junction Overlap Charges
- Bulk Junction Charges


## Junction Overlap Charges

The block calculates the following junction overlap charges:

## SPICE NMOS

- $Q_{G S}=C G S O * W I D T H^{*} V_{g s}$

Where:

- $Q_{G S}$ is the gate-source overlap charge.
- CGSO is the G-S overlap capacitance, CGSO parameter value.
- WIDTH is the Width of channel, WIDTH parameter value.
- $Q_{G D}=C G D O^{*} W I D T H^{*} V_{g d}$

Where:

- $Q_{G D}$ is the gate-drain overlap charge.
- CGDO is the G-D overlap capacitance, CGDO parameter value.
- $Q_{G B}=C G B O^{*}\left(L E N G T H-2^{*} L D\right)^{*} V_{g b}$

Where:

- $Q_{G B}$ is the gate-bulk overlap charge.
- $C G B O$ is the G-B overlap capacitance, CGBO parameter value.
- LENGTH is the Length of channel, LENGTH parameter value.
- $L D$ is the Lateral diffusion, $L D$ parameter value.


## Bulk Junction Charges

The block provides the following relationship between the bulk-drain bottom junction charge $Q_{\text {bottom }}$ and the junction voltage $V_{b d}$ after adjusting the applicable model parameters for temperature.

## SPICE NMOS

Applicable Range of $\mathbf{V}_{\text {bd }}$ Values	Corresponding $\mathbf{Q}_{\text {bottom }}$ Equation
$V_{b d}<F C^{*} P B$	$Q_{\text {bottom }}=\frac{C B D^{* P B *\left(1-\left(1-\frac{V_{b d}}{P B}\right)^{1-M J}\right)}}{1-M J} \text { if } C B D>0 .$
$V_{b d} \geq F C^{*} P B$	$\begin{aligned} & Q_{\text {botom }}=C B D^{*} \\ & \qquad\left(\begin{array}{c} F 1+\frac{F 3^{*}\left(V_{b d}-F C * P B\right)+\frac{M J *\left(V_{b d}^{2}-(F C * P B)^{2}\right)}{2 * P B}}{F 2} \end{array}\right) \end{aligned}$   if $C B D>0$. $\begin{aligned} & Q_{\text {botom }}=C J * A D^{*} \\ &\left(\begin{array}{l} F 1+\frac{F 3 *\left(V_{b d}-F C * P B\right)+\frac{M J *\left(V_{b d}^{2}-(F C * P B)^{2}\right)}{2 * P B}}{F 2} \end{array}\right) \end{aligned}$   otherwise.

## SPICE NMOS

Where:

- $P B$ is the Bulk junction potential, $\mathbf{P B}$ parameter value.
- $F C$ is the Capacitance coefficient FC parameter value.
- $C B D$ is the Zero-bias BD capacitance, CBD parameter value.
- $C J$ is the Bottom junction cap per area, CJ parameter value.
- $A D$ is the Area of drain, AD parameter value.
- MJ is the Bottom grading coefficient, MJ parameter value.
- $F 1=\frac{P B^{*}\left(1-(1-F C)^{1-M J}\right)}{1-M J}$
- $F 2=(1-F C)^{1+M J}$
- $F 3=1-F C *(1+M J)$

The block uses the equations in the preceding table to calculate the bulk-source bottom junction charge, with the following substitutions:

- $V_{b s}$ replaces $V_{b d}$.
- $A S$ (the Area of source, AS parameter value) replaces $A D$.
- CBS (the Zero-bias BS capacitance, CBS parameter value) replaces CBD.

The block provides the following relationship between the bulk-drain sidewall junction charge $Q_{\text {sidewall }}$ and the junction voltage $V_{b d}$ after adjusting the applicable model parameters for temperature.

## SPICE NMOS

Applicable   Range of $\boldsymbol{V}_{\mathbf{b d}}$   Values	Corresponding $\mathbf{Q}_{\text {sidewall }}$ Equation
$V_{b d}<F C^{*} P B$	$Q_{\text {sidewall }}=\frac{C J S W * P D * P B *\left(1-\left(1-\frac{V_{b d}}{P B}\right)^{1-M G S W}\right)}{1-M G S W}$
$V_{b d} \geq F C^{* P B}$	$Q_{\text {sidewall }}=C J S W * P D^{*}$
$\left(\begin{array}{c}F 1+\frac{F 3^{*}\left(V_{b d}-F C * P B\right)+\frac{M G S W *\left(V_{b d}^{2}-(F C * P B)^{2}\right)}{2 * P B}}{F 2}\end{array}\right.$	

Where:

- CJSW is the Side jet cap/area of jet perimeter, CJSW parameter value.
- $P D$ is the Perimeter of drain, $\mathbf{A D}$ parameter value.
- $M G S W$ is the Side grading coefficient, MJSW parameter value.
- $F 1=\frac{P B^{*}\left(1-(1-F C)^{1-M J S W}\right)}{1-M J S W}$
- $F 2=(1-F C)^{1+M J S W}$
- $F 3=1-F C *(1+M J S W)$


## SPICE NMOS

The block uses the equations in the preceding table to calculate the bulk-source sidewall junction charge and the sidewall junction voltage, with the following substitutions:

- $V_{b s}$ replaces $V_{b d}$.
- $P S$ (the Perimeter of source, PS parameter value) replaces $P D$.


## Temperature Dependence

Several transistor parameters depend on temperature. There are two ways to specify the transistor temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the transistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- $T_{C}$ is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, $T_{C}$ is the default value of this parameter.
- $T_{O}$ is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the transistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the transconductance $K P$ and the transistor temperature $T$ :

$$
K P(T)=\frac{K P}{\left(T / T_{\text {meas }}\right)^{3 / 2}}
$$

where:

## SPICE NMOS

- KP is the Transconductance, $\mathbf{K P}$ parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.

The block provides the following relationship between the surface potential $P H I$ and the transistor temperature $T$ :

$$
\begin{gathered}
\operatorname{PHI}(T)=\frac{T}{T_{\text {meas }}}\left(\operatorname{PHI}+\frac{k T_{\text {meas }}}{q}\left(\log \left(\frac{T_{\text {meas }}}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T_{\text {meas }}}}{T_{\text {meas }}}\right)\right)\right) \\
\quad-\frac{k T}{q}\left(\log \left(\frac{T}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T}}{T}\right)\right)
\end{gathered}
$$

where:

- $E G_{T_{\text {meas }}}=1.16 \mathrm{eV}-\left(7.02 e-4 * T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 e V-\left(7.02 e-4 * T^{2}\right) /(T+1108)$

The block provides the following relationship between the built-in voltage VBI and the transistor temperature $T$ :

$$
\begin{aligned}
V B I(T)=V T O & +M T Y P E *\left(\frac{P H I(T)-P H I}{2}-G A M M A \sqrt{P H I}\right) \\
& +\frac{E G_{T_{\text {meas }}}-E G_{T}}{2}
\end{aligned}
$$

where:

- $V T O$ is:
- The Threshold voltage, VTO parameter value, if this parameter has a numerical value.


## SPICE NMOS

- $\Phi-3.25+E G_{T_{\text {meas }}} / 2+$ MTYPE *PHI $/ 2-$ NSS * $q * T O X /\left(3.9 * \varepsilon_{0}\right)$ + MTYPE $*(G A M M A * \sqrt{P H I}+P H I)$, if Threshold voltage, VTO is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- $\Phi$ is:
- 3.2, if $T P G$ (the Gate type?, TPG parameter value) is 0 .
- $3.25+E G_{T_{\text {meas }}} / 2-M T Y P E * T P G * E G_{T_{\text {meas }}} / 2$, otherwise.
- GAMMA is:
- The Bulk threshold, GAMMA parameter value, if this parameter has a numerical value.
- TOX $* \sqrt{2 * 11.7 * \varepsilon_{0} * q * N S U B} /\left(3.9 * \varepsilon_{0}\right)$, if Bulk threshold, GAMMA is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.

The block provides the following relationship between the bulk saturation current $I S$ and the transistor temperature $T$ :

$$
I S(T)=I S * e^{\frac{-q E G_{T}}{N D^{*} k T}+\frac{q E G_{T_{\text {meas }}}}{N D^{*} k T_{\text {meas }}}}
$$

where:

- $N D$ is the Emission coefficient, ND parameter value.
- IS is the Bulk saturation current, IS parameter value.

The block provides the following relationship between the bulk junction saturation current density $J S$ and the transistor temperature $T$ :

$$
J S(T)=J S * e^{\frac{-q E G_{T}}{N D^{*} k T}+\frac{q E G_{T_{\text {meas }}}}{N D^{*} k T_{\text {meas }}}}
$$

## SPICE NMOS

where:

- JS is the Bulk jct sat current density, JS parameter value.

The block provides the following relationship between the bulk junction potential $P B$ and the transistor temperature $T$ :

$$
\begin{aligned}
& P B(T)= \frac{P B+\frac{k T_{\text {meas }}}{q}\left(\log \left(\frac{T_{\text {meas }}}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T_{\text {meas }}}}{T}\right)\right)}{T_{\text {meas }} / T} \\
& \quad-\frac{k T}{q}\left(\log \left(\frac{T}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T}}{T}\right)\right)
\end{aligned}
$$

where:

- $P B$ is the Bulk junction potential, $\mathbf{P B}$ parameter value.

The block provides the following relationship between the bulk-drain junction capacitance $C B D$ and the transistor temperature $T$ :

$$
C B D(T)=C B D \frac{p b o+M J *\left(4 * 10^{4} *(T-300.15) * p b o-(P B(T)-p b o)\right)}{p b o+M J *\left(4 * 10^{4} *\left(T_{\text {meas }}-300.15\right) * p b o-(P B-p b o)\right)}
$$

where:

- $C B D$ is the Zero-bias BD capacitance, CBD parameter value.
- MJ is the Bottom grading coefficient, MJ parameter value.
- $p b o=\frac{P B+\frac{k T_{\text {meas }}}{q}\left(\log \left(\frac{T_{\text {meas }}}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T_{\text {meas }}}}{T}\right)\right)}{T_{\text {meas }} / 300.15}$


## SPICE NMOS

The block uses the $\operatorname{CBD}(T)$ equation to calculate:

- The bulk-source junction capacitance by substituting $C B S$ (the Zero-bias BS capacitance, CBS parameter value) for $C B D$.
- The bottom junction capacitance by substituting CJ (the Bottom junction cap per area, CJ parameter value) for $C B D$.

The block provides the following relationship between the sidewall junction capacitance $C J S W$ and the transistor temperature $T$ :

$$
C J S W(T)=C J S W \frac{p b o+M J S W *\left(4 * 10^{4} *(T-300.15) * p b o-(P B(T)-p b o)\right)}{p b o+M J S W *\left(4 * 10^{4} *\left(T_{\text {meas }}-300.15\right) * p b o-(P B-p b o)\right)}
$$

where:

- MJSW is the Side grading coefficient, MJSW parameter value.


## Basic Assumptions and Limitations

The model is based on the following assumptions:

- The NMOS block does not support noise analysis.
- The NMOS block applies initial conditions across junction capacitors and not across the block ports.


## Model Selection Tab


#### Abstract

Block Parameters: SPICE NMOS

This model approximates a SPICE level 1 or 3 nMOSFET. You specify both model card and instance parameters as instance parameters on this mask. The instance parameter OFF and noise model parameters KF and AF are not supported. SCALE is the number of parallel MOS instances for this device. SCALE multiplies the output current and device charge directly. This differs from the AREA parameter, which multiples the device parameters $\mathrm{KP}, \mathrm{IS}, \mathrm{JS}, \mathrm{CBD}, \mathrm{CBS}, \mathrm{CGSO}, \mathrm{CGDO}, \mathrm{CGBO}, \mathrm{CJ}$ and $\mathrm{CJ5W}$ and divides the parameters RD, RS and RSH.

You can set the MOS temperature to a fixed temperature or to the circuit temperature (from the SPICE Environment Parameters block) plus TOFFSET. The block lets you include or exclude capacitance modeling and initial conditions. The initial conditions ICVDS, ICVGS and ICVBS are the voltages across the internal junctions, and are only effective when the corresponding junction capacitances are present. If physical parameters VTO, KP, PHI, or GAMMA are assigned a NaN value, they will be calculated from specified process parameters TOX and NSUB. Parameters RD, RS or RSH are not used in block calculations when their value is NaN .





## MOS model

Select one of the following MOSFET model options:

- Level 1 MOS - Use the "Level 1 Drain Current Model" on page 1-667. This is the default option.
- Level 3 MOS - Use the "Level 3 Drain Current Model" on page 1-670.


## SPICE NMOS

## Dimensions Tab



## Device area factor, AREA

The transistor area. This value multiplies the following parameter values:

- Transconductance, KP
- Bulk saturation current, IS
- Bulk jct sat current density, JS
- Zero-bias BD capacitance, CBD


## SPICE NMOS

- Zero-bias BS capacitance, CBS
- G-S overlap capacitance, CGSO
- G-D overlap capacitance, CGDO
- G-B overlap capacitance, CGBO
- Bottom junction cap per area CJ
- Side jct cap/area of jct perimeter CJSW

It divides the following parameter values:

- Drain resistance, RD
- Source resistance, RS
- Sheet resistance, RSH

The default value is 1 . The value must be greater than 0 .

## Number of parallel devices, SCALE

The number of parallel MOS instances for this device. This parameter multiplies the output current and device charge. The default value is 1 . The value must be greater than 0 .

## Length of channel, LENGTH

Length of the channel between the source and drain. The default value is $1 \mathrm{e}-04 \mathrm{~m}$.

## Width of channel, WIDTH

Width of the channel between the source and drain. The default value is $1 \mathrm{e}-04 \mathrm{~m}$.

Area of drain, AD
Area of the transistor drain diffusion. The default value is $0 \mathrm{~m}^{2}$. The value must be greater than or equal to 0 .

## Area of source, AS

Area of the transistor source diffusion. The default value is $0 \mathrm{~m}^{2}$. The value must be greater than or equal to 0 .

## SPICE NMOS

## Perimeter of drain, PD

Perimeter of the transistor drain diffusion. The default value is 0 m .

## Perimeter of source, PS

Perimeter of the transistor source diffusion. The default value is 0 m .

## Resistors Tab



## SPICE NMOS

## Drain resistance, RD

The transistor drain ohmic resistance. The default value is $0.01 \Omega$. If you set this parameter to $\mathrm{NaN} \Omega$, this value means the parameter is unspecified, so the block calculates the drain resistance as described in "Resistance Calculations" on page $1-664$. The value must be equal to 0 or greater than or equal to Rmin. Rmin is a built-in model constant whose value is $1 \mathrm{e}-12$.

## Source resistance, RS

The transistor source ohmic resistance. The default value is $1 \mathrm{e}-4 \Omega$. If you set this parameter to $\mathrm{NaN} \Omega$, this value means the parameter is unspecified, so the block calculates the drain resistance as described in "Resistance Calculations" on page $1-664$. The value must be equal to 0 or greater than or equal to Rmin. Rmin is a built-in model constant whose value is $1 \mathrm{e}-12$.

## Sheet resistance, RSH

Resistance per square of the transistor source and drain. The default value is $N a N \Omega$. This value means the parameter is unspecified. The block only uses this parameter value if you do not specify one or both of the Drain resistance, RD and Source resistance, RS parameter values, as described in "Resistance Calculations" on page 1-664. The value must be greater than or equal to 0 .

## Number of drain squares, NRD

Number of squares of resistance that make up the transistor drain diffusion. The default value is 1 . The value must be greater than or equal to 0 . The block only uses this parameter value if you do not specify one or both of the Drain resistance, RD and Source resistance, RS parameter values, as described in "Resistance Calculations" on page 1-664.

## Number of source squares, NRS

Number of squares of resistance that make up the transistor source diffusion. The default value is 1 . The value must be greater than or equal to 0 . The block only uses this parameter value if you do not specify one or both of the Drain resistance,

## SPICE NMOS

RD and Source resistance, RS parameter values, as described in "Resistance Calculations" on page 1-664.

## DC Currents Tab



## Threshold voltage, VTO

The gate-source voltage above which the transistor produces a nonzero drain current. The default value is 0 V. If you assign this parameter a value of NaN, the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate

## SPICE NMOS

doping, NSUB parameters. For more information about this calculation, see "Temperature Dependence" on page 1-681.

## Transconductance, KP

The derivative of drain current with respect to gate voltage. The default value is $2 e-05 \mathrm{~A} / \mathrm{V}^{2}$. The value must be greater than or equal to 0 . If you assign this parameter a value of NaN , the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Level 1 Drain Current Model" on page 1-667 or "Level 3 Drain Current Model" on page 1-670 as appropriate for the selected value of the MOS model parameter.

## Bulk threshold, GAMMA

Body effect parameter, which relates the threshold voltage, VTH, to the body bias, VBS, as described in "Level 1 Drain Current Model" on page 1-667 and "Level 3 Drain Current Model" on page
1-670. The default value is $0 \sqrt{V}$. The value must be greater than or equal to 0 . If you assign this parameter a value of NaN , the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Level 1 Drain Current Model" on page 1-667 or "Level 3 Drain Current Model" on page 1-670 as appropriate for the selected value of the MOS model parameter.

## Surface potential, PHI

Twice the voltage at which the surface electron concentration becomes equal to the intrinsic concentration and the device transitions between depletion and inversion conditions. The default value is 0.6 V . The value must be greater than or equal to 0 . If you assign this parameter a value of NaN, the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Level 1 Drain Current Model" on page 1-667 or "Level 3 Drain Current Model" on page

## SPICE NMOS

1-670 as appropriate for the selected value of the MOS model parameter.

## Channel modulation, LAMBDA

The channel-length modulation. This parameter is only visible when you select Level 1 MOS for the MOS model parameter. The default value is $01 / \mathrm{V}$.

Bulk saturation current, IS
The magnitude of the current that the junction approaches asymptotically for very large reverse bias levels. The default value is $1 \mathrm{e}-14 \mathrm{~A}$. The value must be greater than or equal to 0 .

## Bulk jet sat current density, JS

The magnitude of the current per unit area that the junction approaches asymptotically for very large reverse bias levels. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Emission coefficient, ND

The transistor emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

Width effect on threshold, DELTA
The factor that controls the effect of transistor width on threshold voltage. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0 .

## Max carrier drift velocity, VMAX

The maximum drift velocity of the carriers. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is $0 \mathrm{~m} / \mathrm{s}$.

## Fast surface state density, NFS

The fast surface state density adjusts the drain current for the mobility reduction caused by the gate voltage. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is $01 / \mathrm{cm}^{2}$.

## SPICE NMOS

Vds dependence threshold volt, ETA
The coefficient that controls how the threshold voltage depends on the drain-source voltage in the drain current calculation. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0 .
Vgs dependence on mobility, THETA
The coefficient that controls how the mobility affects the gate voltage in the drain current calculation. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is $01 / \mathrm{V}$.

## Mobility modulation, KAPPA

The coefficient that controls how the mobility affects the channel length in the drain current calculation. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0.2 .

## SPICE NMOS

## C-V Tab



## Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.
- Yes - Specify zero-bias junction capacitance, junction potential, grading coefficient, forward-bias depletion and capacitance coefficient.


## SPICE NMOS

## G-S overlap capacitance, CGSO

Gate-source capacitance due to the diffusion that occurs when the device operates in depletion mode. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

## G-D overlap capacitance, CGDO

Gate-drain capacitance due to the diffusion that occurs when the device operates in depletion mode. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

## G-B overlap capacitance, CGBO

Gate-base capacitance due to the diffusion that occurs when the device operates in depletion mode. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

## Zero-bias BD capacitance, CBD

The value of the capacitance placed between the base and the drain. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 F. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is 1e-18.

## Zero-bias BS capacitance, CBS

The value of the capacitance placed between the base and the source. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 F. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

## SPICE NMOS

## Bottom junction cap per area CJ

Zero-bias bulk junction bottom capacitance per junction area. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

## Bottom grading coefficient, MJ

The transistor bottom grading coefficient. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be equal to 0 or less than MGmax. MGmax is a built-in model constant whose value is 0.9 .

## Side jct cap/area of jet perimeter CJSW

Zero-bias bulk junction sidewall capacitance per junction perimeter. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

## Side grading coefficient, MJSW

The transistor sidewall grading coefficient. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be equal to 0 or less than MGmax. MGmax is a built-in model constant whose value is 0.9 .

## Bulk junction potential, PB

The potential across the bulk junction. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.8 V . The value must be equal to 0 or greater than or equal to VJmin. VJmin is a built-in model constant whose value is 0.01 .

## Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Yes for the Model junction capacitance

## SPICE NMOS

parameter. The default value is 0.5 . The value must be equal to 0 or less than or equal to FCmax. FCmax is a built-in model constant whose value is 0.95 .

## Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial diode voltage.

Note The NMOS block applies the initial diode voltage across the junction capacitors and not across the ports.

## Initial condition voltage ICVDS

Drain-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and $Y e s$ for the Specify initial condition parameter. The default value is 0 V .

## Initial condition voltage ICVGS

Gate-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

## Initial condition voltage ICVBS

Bulk-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

## SPICE NMOS

## Process Tab



## Oxide thickness, TOX

Thickness of the gate oxide. The default value is NaN m. The value must be greater than or equal to 0 .

Note When you select Level 3 MOS for the MOS model parameter, the block uses a value of 1e-7 rather than NaN by default.

## SPICE NMOS

## Lateral diffusion, LD

Length of lateral diffusion. The default value is 0 m .

## Substrate doping, NSUB

Substrate doping. The default value is $\mathrm{NaN} 1 / \mathrm{cm}^{3}$. The value must be greater than or equal to 1.45 e 10 (the carrier concentration of intrinsic silicon).

## Surface state density, NSS

Substrate doping. The default value is $01 / \mathrm{cm}^{2}$.

## Surface mobility, U0

Zero-bias surface mobility coefficient. The default value is 600 $\mathrm{cm}^{2} / \mathrm{V} / \mathrm{s}$.

## Junction depth, XJ

Junction depth. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0 m .

## Gate type?,TPG

Select one of the following MOSFET gate materials (as compared to the substrate):

- Opposite of substrate - The gate material is the opposite of the substrate. This means that TPG $=1$ in the device equations. This is the default option.
- Same as substrate - The gate material is the same as the substrate. This means that TPG $=-1$ in the device equations.
- Aluminum - The gate material is aluminum. This means that $\mathrm{TPG}=0$ in the device equations.


## SPICE NMOS

## Temperature Tab



## Model temperature dependence using

Select one of the following options for modeling the diode temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature value plus the Offset local circuit temperature, TOFFSET value. The Circuit temperature value comes from the SPICE Environment Parameters block, if


## SPICE NMOS

one exists in the circuit. Otherwise, it comes from the default value for this block.

- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.


## Offset local circuit temperature, TOFFSET

The amount by which the transistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

Fixed circuit temperature, TFIXED
The temperature at which to simulate the transistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0.

## Parameter extraction temperature, TMEAS

The temperature at which the transistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

## Ports <br> The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

D
Electrical conserving port associated with the transistor drain terminal.

Electrical conserving port associated with the transistor source terminal.

B
Electrical conserving port associated with the transistor bulk terminal.

## SPICE NMOS

References
[1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 3.

See Also SPICE PMOS

## SPICE NPN

Purpose Model Gummel-Poon NPN Transistor
LibrarySPICE-Compatible Components/Semiconductor Devices
Description The NPN block represents a SPICE-compatible four-terminalGummel-Poon NPN transistor. The substrate port is connected to thetransistor body using a capacitor, so these devices are equivalent toa three-terminal transistor when you connect the substrate port toany other port and use the default value of zero for the C-S junctioncapacitance, CJS parameter.
The NPN block model includes the following components:

- "Current-Voltage and Base Charge Model" on page 1-704
- "Base Resistance Model" on page 1-708
- "Transit Charge Modulation Model" on page 1-708
- "Junction Charge Model" on page 1-709
- "Temperature Dependence" on page 1-711


## Current-Voltage and Base Charge Model

The current-voltage relationships and base charge relationships for the transistor are calculated adjusting the applicable model parameters for temperature as described in the following sections:

- Base-Emitter and Base-Collector Junction Currents on page 704
- Terminal Currents on page 707
- Base Charge Model on page 707


## Base-Emitter and Base-Collector Junction Currents

The base-emitter junction current is calculated using the following equations:

- When $V_{B E}>80 * V_{T F}$ :


## SPICE NPN

$$
\begin{aligned}
& I_{b e f}=I S *\left(\left(\frac{V_{B E}}{V_{T F}}-79\right) * e^{80}-1\right)+G_{\min } * V_{B E} \\
& I_{b e e}=I S E *\left(\left(V_{B E}-80 * V_{T F}+V_{T E}\right) * \frac{e^{\left(80 * V_{T E} V_{T E}\right)}}{V_{T E}}-1\right)
\end{aligned}
$$

- When $V_{B E} \leq 80 * V_{T F}$

$$
\begin{aligned}
& I_{b e f}=I S *\left(e^{\left(V_{B E} N_{\text {TF }}\right)}-1\right)+G_{\text {min }} * V_{B E} \\
& I_{\text {bee }}=I S E *\left(e^{\left(V_{B E} V_{T E}\right)}-1\right)
\end{aligned}
$$

The base-collector junction current is calculated using the following equations:

- When $V_{B C}>80 * V_{T R}$ :

$$
\begin{aligned}
& I_{b c r}=I S *\left(\left(\frac{V_{B C}}{V_{T R}}-79\right) * e^{80}-1\right)+G_{\min } * V_{B C} \\
& I_{b c c}=I S C *\left(\left(V_{B C}-80 * V_{T R}+V_{T C}\right) * \frac{e^{\left(80 * V_{T R} V_{T C}\right)}}{V_{T C}}-1\right)
\end{aligned}
$$

- When $V_{B C} \leq 80 * V_{\text {TR }}$

$$
\begin{aligned}
& I_{b c r}=I S *\left(e^{\left(V_{B C} V_{\text {TR }}\right)}-1\right)+G_{\min } * V_{B C} \\
& I_{b c c}=I S C *\left(e^{\left(V_{B C} V_{T C}\right)}-1\right)
\end{aligned}
$$

In the preceding equations:

## SPICE NPN

- $V_{B E}$ is the base-emitter voltage and $V_{B C}$ is the base-collector voltage.
$V_{T E}=N E * k * T / q, V_{T C}=N C * k * T / q, V_{T F}=N F * k * T / q$, and
$V_{\text {TR }}=N R^{*} k^{*} T / q$.
- ISC and ISE are the B-C leakage current, ISC and B-E leakage current, ISE parameter values, respectively.
- $N E, N C, N F$, and $N R$ are the B-E emission coefficient, NE, B-C emission coefficient, NC, Forward emission coefficient, NF and Reverse emission coefficient, NR parameter values, respectively.
- $q$ is the elementary charge on an electron.
- $k$ is the Boltzmann constant.
- $T$ is the transistor temperature:
- If you select Device temperature for the Model temperature dependence using parameter, $T$ is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- If you select Fixed temperature for the Model temperature dependence using parameter, $T$ is the Fixed circuit temperature, TFIXED parameter value.
- $G_{\text {min }}$ is the minimum conductance. By default, $G_{\text {min }}$ matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change $G_{m i n}$, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.


## Terminal Currents

The terminal currents, $I_{B}$ and $I_{C}$ are the base and collector currents, defined as positive into the device. They are calculated as:

$$
\begin{aligned}
& I_{B}=-\left(\frac{I_{e b f}}{B F}+I_{e b e}+\frac{I_{c b r}}{B R}+I_{c b c}\right) \\
& I_{C}=-\left(\frac{I_{e b f}-I_{c b r}}{q_{b}}-\frac{I_{c b r}}{B R}-I_{\mathrm{cbc}}\right)
\end{aligned}
$$

where $B F$ and $B R$ are the Forward beta, BF and Reverse beta, BR parameter values, respectively.

## Base Charge Model

The base charge, $q_{b}$, is calculated using the following equations:

$$
\begin{aligned}
& q_{b}=\frac{q_{1}}{2}\left(1+\sqrt{0.5 *\left(\sqrt{\left(1+4 * q_{2}-e p s\right)^{2}+e p s^{2}}+1+4^{*} q_{2}-e p s\right)+e p s}\right) \\
& q_{1}=\left(1-\frac{V_{B C}}{V A F}-\frac{V_{B E}}{V A R}\right)^{-1} \\
& q_{2}=\frac{I_{b e f}}{I K F}+\frac{I_{b c r}}{I K R}
\end{aligned}
$$

where

- $V A F$ and $V A R$ are the Forward Early voltage, VAF and Reverse Early voltage, VAR parameters, respectively.
- IKF and IKR are the Forward knee current, IKF and Reverse knee current, IKR parameter values, respectively.
- eps is $1 \mathrm{e}-4$.


## Base Resistance Model

The block models base resistance in one of two ways:

- If you use the default value of infinity for the Half base resistance cur, IRB parameter, the NPN block calculates the base resistance $r_{b b}$ as

$$
r_{b b}=R B M+\frac{R B-R B M}{q_{b}}
$$

where:

- $R B M$ is the Minimum base resistance, RBM parameter value.
- $R B$ is the Zero-bias base resistance, $\mathbf{R B}$ parameter value.
- If you specify a finite value for the Half base resistance cur, IRB parameter, the NPN block calculates the base resistance $r_{b b}$ as

$$
r_{b b}=R B M+3 *(R B-R B M) *\left(\frac{\tan z-z}{z * \tan ^{2} z}\right)
$$

where

$$
z=\frac{\sqrt{1+144 I_{B} /\left(\pi^{2} I R B\right)}-1}{\left(24 / \pi^{2}\right) \sqrt{\left(I_{B} / I R B\right)}}
$$

## Transit Charge Modulation Model

If you specify nonzero values for the Coefficient of TF, XTF parameter, the block models transit charge modulation by scaling the Forward transit time, TF parameter value as follows:

$$
T F_{\bmod }=\frac{T F *\left[1+X T F * e^{V_{B C}\left(1.44 V_{T F}\right)}\left(\frac{I_{B E}}{I_{B E}+I T F}\right)^{2}\right]}{q_{b}}
$$

where ITF is the Coefficient of TF, ITF parameter value.

## Junction Charge Model

The block lets you model junction charge. The base-collector charge $Q_{b c}$ and the base-emitter charge $Q_{b e}$ depend on an intermediate value, $Q_{d e p}$ as follows, after adjusting the applicable model parameters for temperature:

- For the internal base-emitter junctions:

$$
Q_{b e}=T F_{\mathrm{mod}} * I_{b e}+Q_{d e p}
$$

- For the internal base-collector junctions:

$$
Q_{b c}=T R^{*} I_{b c}+X C J C * Q_{d e p}
$$

- For the external base-collector junctions:

$$
Q_{b_{\text {exc }}}=(1-X C J C) * Q_{d e p}
$$

$Q_{d e p}$ depends on the junction voltage, $V_{j c t}\left(V_{B E}\right.$ for the base-emitter junction and $V_{B C}$ for the base-collector junction) as follows.

## SPICE NPN

Applicable   Range of $\boldsymbol{v}_{\text {ict }}$   Values	Corresponding $\mathbf{Q}_{\text {dep }}$ Equation
$V_{\text {jct }}<F C^{*} V J$	$Q_{\text {dep }}=C_{\text {jct }} * V J * \frac{1-\left(1-V_{\text {jct }} / V J\right)^{(1-M J)}}{1-M J}$
$V_{\text {jct }} \geq F C * V J$	$Q_{\text {dep }}=C_{\text {jct }} *\left[F 1+\frac{\left.F 3 *\left(V_{\text {jct }}-F C * V J\right)+\frac{M J *\left[V_{\text {jct }}{ }^{2}-(F C * V J)^{2}\right]}{2 * V J}\right]}{F 2}\right]$

Where:

- $F C$ is the Capacitance coefficient FC parameter value.
- $V J$ is:
- The B-E built-in potential, VJE parameter value for the base-emitter junction.
- The B-C built-in potential, VJC parameter value for the base-collector junction.
- MJ is:
- The B-E exponential factor, MJE parameter value for the base-emitter junction.
- The B-C exponential factor, MJC parameter value for the base-collector junction.
- $C_{j c t}$ is:
- The B-E depletion capacitance, CJE parameter value for the base-emitter junction.


## SPICE NPN

- The B-C depletion capacitance, CJC parameter value for the base-collector junction.
- $F 1=V J *\left(1-(1-F C)^{(1-M J)}\right) /(1-M J)$
- $F 2=(1-F C)^{(1+M J)}$
- $F 3=1-F C^{*}(1+M J)$

The collector-substrate charge $Q_{c s}$ depends on the collector-substrate voltage $V_{c s}$ as follows, after adjusting the applicable model parameters for temperature.

Applicable   Range of $\boldsymbol{V}_{c s}$   Values	Corresponding $\mathbf{Q}_{c s}$ Equation
$V_{c s}<0$	$Q_{c s}=C J S * V J S *\left(\frac{1-\left(1-V_{c s} / V J S\right)^{(1-M J S)}}{1-M J S}\right)$
$V_{c s} \geq 0$	$Q_{c s}=C J S *\left(1+M J S * V_{c s} /(2 * V J S)\right) * V_{c s}$

where:

- CJS is the C-S junction capacitance, CJS parameter value.
- VJS is the Substrate built-in potential, VJS parameter value.
- MJS is the Substrate exponential factor, MJS parameter value.


## Temperature Dependence

Several transistor parameters depend on temperature. There are two ways to specify the transistor temperature:

## SPICE NPN

- When you select Device temperature for the Model temperature dependence using parameter, the transistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- $T_{C}$ is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, $T_{C}$ is the default value of this parameter.
- $T_{O}$ is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the transistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the saturation current $I S$ and the transistor temperature $T$ :

$$
I S(T)=I S *\left(T / T_{\text {meas }}\right)^{X T I} * e^{\left(\frac{T}{T_{\text {meas }}}-1\right) * \frac{E G}{V_{t}}}
$$

where:

- IS is the Transport saturation current, IS parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.
- $X T I$ is the Temperature exponent for IS, XTI parameter value.
- $E G$ is the Energy gap, EG parameter value.
- $V_{t}=k T / q$.

The block provides the following relationship between the base-emitter junction potential VJE and the transistor temperature $T$ :

$$
\operatorname{VJE}(T)=\operatorname{VJE} *\left(\frac{T}{T_{\text {meas }}}\right)-\frac{3 * k^{*} T}{q} * \log \left(\frac{T}{T_{\text {meas }}}\right)-\left(\frac{T}{T_{\text {meas }}}\right) * E G_{T_{\text {mess }}}+E G_{T}
$$

where:

- VJE is the B-E built-in potential, VJE parameter value.
- $E G_{T_{\text {mes }}}=1.16 \mathrm{eV}-\left(7.02 e-4 * T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 \mathrm{eV}-\left(7.02 e-4 * T^{2}\right) /(T+1108)$

The block uses the $\operatorname{VJE}(T)$ equation to calculate the base-collector junction potential by substituting VJC (the B-C built-in potential, VJC parameter value) for VJE.

The block provides the following relationship between the base-emitter junction capacitance $C J E$ and the transistor temperature $T$ :

$$
\operatorname{CJE}(T)=\operatorname{CJE} *\left[1+M J E *\left(400 e-6 *\left(T-T_{\text {meas }}\right)-\frac{V J E(T)-V J E}{V J E}\right)\right]
$$

where:

- CJE is the B-E depletion capacitance, CJE parameter value.
- MJE is the B-E exponential factor, MJE parameter value.

The block uses the $\operatorname{CJE}(T)$ equation to calculate the base-collector junction capacitance by substituting CJC (the B-C depletion capacitance, CJC parameter value) for CJE and MJC (the B-C exponential factor, MJC parameter value) for MJE.
The block provides the following relationship between the forward and reverse beta and the transistor temperature $T$ :

## SPICE NPN

$$
\beta(T)=\beta *\left(\frac{T}{T_{\text {meas }}}\right)^{X T B}
$$

where:

- $\beta$ is the Forward beta, BF or Reverse beta, BR parameter value.
- XTB is the Beta temperature exponent, XTB parameter value.

The block provides the following relationship between the base-emitter leakage current $I S E$ and the transistor temperature $T$ :

$$
\operatorname{ISE}(T)=\operatorname{ISE} *\left(\frac{T}{T_{\text {meas }}}\right)^{-\mathrm{XTB}} *\left(\frac{\operatorname{IS}(\mathrm{~T})}{\mathrm{IS}}\right)^{1 / \mathrm{NE}}
$$

where:

- ISE is the B-E leakage current, ISE parameter value.
- $N E$ is the B-E emission coefficient, NE parameter value.

The block uses this equation to calculate the base-collector leakage current by substituting ISC (the B-C leakage current, ISC parameter value) for $I S E$ and $N C$ (the B-C emission coefficient, NC parameter value) for $N E$.

[^0]
## Dialog <br> Box and Parameters

## Main Tab



## Device area, AREA

The transistor area. This value multiplies the following parameter values:

- Transport saturation current, IS
- Forward knee current, IKF
- B-E leakage current, ISE
- Reverse knee current, IKR
- B-C leakage current, ISC


## SPICE NPN

- Half base resistance cur, IRB
- B-E depletion capacitance, CJE
- Coefficient of TF, ITF
- B-C depletion capacitance, CJC
- C-S junction capacitance, CJS

It divides the following parameter values:

- Zero-bias base resistance, RB
- Minimum base resistance, RBM
- Emitter resistance, RE
- Collector resistance, RC

The default value is $1 \mathrm{~m}^{2}$. The value must be greater than 0 .
Number of parallel devices, SCALE
The number of parallel transistors the block represents. This value multiplies the output current and device charges. The default value is 1 . The value must be greater than 0 .

## Forward Gain Tab



## Transport saturation current, IS

The magnitude of the current at which the transistor saturates. The default value is $1 \mathrm{e}-16 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Forward beta, BF

The ideal maximum reverse beta. The default value is 100 . The value must be greater than 0 .

## SPICE NPN

## Forward emission coefficient, NF

The reverse emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

## B-E leakage current, ISE

The base-emitter leakage current. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## B-E emission coefficient, NE

The base-collector emission coefficient or ideality factor. The default value is 1.5 . The value must be greater than 0 .

Forward knee current, IKF
The current value at which forward-beta high-current roll-off occurs. The default value is Inf $\mathrm{A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Forward Early voltage, VAF

The forward Early voltage. The default value is Inf V. The value must be greater than or equal to 0 .

## Reverse Gain Tab



## Reverse beta, BR

The ideal maximum reverse beta. The default value is 1 . The value must be greater than 0 .

## Reverse emission coefficient, NR

The reverse emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

## B-C leakage current, ISC

The base-collector leakage current. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## SPICE NPN

## B-C emission coefficient, NC

The base-collector emission coefficient or ideality factor. The default value is 2 . The value must be greater than 0 .

## Reverse knee current, IKR

The current value at which reverse-beta high-current roll-off occurs. The default value is Inf $\mathrm{A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Reverse Early voltage, VAR

The reverse Early voltage. The default value is Inf V. The value must be greater than or equal to 0 .

## Resistors Tab



## Emitter resistance, RE

The resistance of the emitter. The default value is $1 \mathrm{e}-4 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

## Collector resistance, RC

The resistance of the collector. The default value is $0.01 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

## Zero-bias base resistance, RB

The resistance of the base. The default value is $1 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

## Minimum base resistance, RBM

The minimum resistance of the base. The default value is $0 \mathrm{~m}^{2 *} \Omega$. The value must be less than or equal to the Zero-bias base resistance, RB parameter value.

## Half base resistance cur, IRB

The base current at which the base resistance has dropped to half of its zero-bias value. The default value is Inf $\mathrm{A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 . Use the default value of Inf if you do not want to model the change in base resistance as a function of base current.

## Capacitance Tab



## Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.
- B-E Capacitance - Model the junction capacitance across the base-emitter junction.


## SPICE NPN

- B-C Capacitance - Model the junction capacitance across the base-collector junction.
- C-S Capacitance - Model the junction capacitance across the collector-substrate junction.

Note To include junction capacitance in the model:
1 Select B-E Capacitance and specify the base-emitter junction capacitance parameters.

2 Select B-C Capacitance and specify the base-collector junction capacitance parameters.

3 Select C-S Capacitance and specify the collector-substrate junction capacitance parameters.

You can specify or change any of the common parameters when you select any of the preceding options for the Model junction capacitance parameter.

## B-E depletion capacitance, CJE

The depletion capacitance across the base-emitter junction. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## B-E built-in potential, VJE

The base-emitter junction potential. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0.75 V . The value must be greater than or equal to 0.01 V .

## B-E exponential factor, MJE

The grading coefficient for the base-emitter junction. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value

## SPICE NPN

is 0.33 . The value must be greater than or equal to 0 and less than or equal to 0.9 .

## Forward transit time, TF

The transit time of the minority carriers that cause diffusion capacitance when the base-emitter junction is forward-biased. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 .

## Coefficient of TF, XTF

The coefficient for the base-emitter and base-collector bias dependence of the transit time, which produces a charge across the base-emitter junction. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 . Use the default value of 0 if you do not want to model the effect of base-emitter bias on transit time.

## VBC dependence of TF, VTF

The coefficient for the base-emitter bias dependence of the transit time. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is Inf V . The value must be greater than or equal to 0 .

## Coefficient of TF, ITF

The coefficient for the dependence of the transit time on collector current. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 . Use the default value of 0 if you do not want to model the effect of collector current on transit time.

## B-C depletion capacitance, CJC

The depletion capacitance across the base-collector junction. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than 0 .

B-C built-in potential, VJC
The base-collector junction potential. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0.75 V . The value must be greater than or equal to 0.01 V .

## B-C exponential factor, MJC

The grading coefficient for the base-collector junction. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0.33 . The value must be greater than or equal to 0 and less than or equal to 0.9.

## B-C capacitance fraction, XCJC

The fraction of the base-collector depletion capacitance that is connected between the internal base and the internal collector. The rest of the base-collector depletion capacitance is connected between the external base and the internal collector. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 and less than or equal to 1 .

## Reverse transit time, TR

The transit time of the minority carriers that cause diffusion capacitance when the base-collector junction is reverse-biased. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0 s . The value must be greater than or equal to 0 .

## Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance parameter. The default value is 0.5 . The value must be greater than or equal to 0 and less than or equal to 0.95 .

## SPICE NPN

## Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial transistor conditions.

Note The NPN block applies the initial transistor voltages across the junction capacitors and not across the ports.

This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance parameter.

## Initial condition voltage ICVBE

Base-emitter voltage at the start of the simulation. This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

## Initial condition voltage ICVCE

Base-collector voltage at the start of the simulation. This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

C-S junction capacitance, CJS
The collector-substrate junction capacitance. This parameter is only visible when you select C-S Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

Substrate built-in potential, VJS
The potential of the substrate. This parameter is only visible when you select C-S Capacitance for the Model junction capacitance parameter. The default value is 0.75 V .
Substrate exponential factor, MJS
The grading coefficient for the collector-substrate junction. This parameter is only visible when you select C-S Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 and less than or equal to 0.9.

## Temperature Tab



## SPICE NPN

## Model temperature dependence using

Select one of the following options for modeling the transistor temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature value plus the Offset local circuit temperature, TOFFSET value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.


## Beta temperature exponent, XTB

The forward and reverse beta temperature exponent that models base current temperature dependence. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 . The value must be greater than or equal to 0 .
Energy gap, EG
The energy gap that affects the increase in the saturation current as temperature increases. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 1.11 eV . The value must be greater than or equal to 0.1 .

## Temperature exponent for IS, XTI

The order of the exponential increase in the saturation current as temperature increases. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 3 . The value must be greater than or equal to 0 .
Offset local circuit temperature, TOFFSET
The amount by which the transistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

## SPICE NPN

## Parameter extraction temperature, TMEAS

The temperature at which the transistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

## Fixed circuit temperature, TFIXED

The temperature at which to simulate the transistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0 .

## Ports The block has the following ports:

B
Electrical conserving port associated with the transistor base terminal.

C
Electrical conserving port associated with the transistor collector terminal.

E
Electrical conserving port associated with the transistor emitter terminal.

S
Electrical conserving port associated with the transistor substrate terminal.

## References <br> [1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 2.

See Also NPN Bipolar Transistor

## SPICE PJFET

## Purpose Model SPICE-compatible P-Channel JFET <br> Library <br> SPICE-Compatible Components/Semiconductor Devices <br> Description <br> $0 \rightarrow+\square_{0}^{0}$ <br> The PJFET block represents a SPICE-compatible P-channel JFET. <br> The PJFET block model includes the following components: <br> - "Source-Gate Current-Voltage Model" on page 1-730 <br> - "Drain-Gate Current-Voltage Model" on page 1-731 <br> - "Source-Drain Current-Voltage Model" on page 1-732 <br> - "Junction Charge Model" on page 1-733 <br> - "Temperature Dependence" on page 1-735 <br> Source-Gate Current-Voltage Model

The block provides the following relationship between the source-gate current $I_{s g}$ and the source-gate voltage $V_{s g}$ after adjusting the applicable model parameters for temperature.

Applicable Range of   $\boldsymbol{V}_{s g}$ Values	Corresponding $\boldsymbol{I}_{s g}$ Equation
$V_{s g}>80 * V_{t}$	$I_{s g}=I S *\left(\left(\frac{V_{s g}}{V_{t}}-79\right) e^{80}-1\right)+V_{s q} * G$ min
$80 * V_{t} \geq V_{s g}$	$I_{s g}=I S *\left(e^{V_{s g} / V_{t}}-1\right)+V_{s g} * G$ min

Where:

- IS is the Saturation current, IS parameter value.
- $V_{t}=N D * k * T / q$
- $N D$ is the Emission coefficient, ND parameter value.


## SPICE PJFET

- $q$ is the elementary charge on an electron.
- $k$ is the Boltzmann constant.
- $T$ is the diode temperature:
- If you select Device temperature for the Model temperature dependence using parameter, $T$ is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- If you select Fixed temperature for the Model temperature dependence using parameter, $T$ is the Fixed circuit temperature, TFIXED parameter value.
- GMIN is the diode minimum conductance. By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.


## Drain-Gate Current-Voltage Model

The block provides the following relationship between the drain-gate current $I_{d g}$ and the drain-gate voltage $V_{d g}$ after adjusting the applicable model parameters for temperature.

Applicable Range of   $\mathbf{V}_{\mathrm{dg}}$ Values	Corresponding $I_{\mathrm{dg}}$ Equation
$V_{d g}>80^{*} V_{t}$	$I_{d g}=I S *\left(\left(\frac{V_{d g}}{V_{t}}-79\right) e^{80}-1\right)+V_{d g} * G \min$
$80 * V_{t} \geq V_{d g}$	$I_{d g}=I S *\left(e^{V_{d g} / V_{t}}-1\right)+V_{d g} * G \min$

## SPICE PJFET

## Source-Drain Current-Voltage Model

The block provides the following relationship between the source-drain current $I_{s d}$ and the source-drain voltage $V_{s d}$ in normal mode ( $V_{s d} \geq 0$ ) after adjusting the applicable model parameters for temperature.

Applicable   Range of $\boldsymbol{V}_{s g}$   and $\boldsymbol{V}_{d g}$ Values	Corresponding $I_{s d}$ Equation
$V_{s q}-V_{t o} \leq 0$	$I_{s d}=0$
$0<V_{s q}-V_{t o} \leq V_{s d}$	$I_{s d}=-\beta^{*}\left(V_{s q}-V_{t o}\right)^{2} *\left(1+\lambda * V_{s d}\right)$
$0<V_{s d}<V_{s g}-V_{t o}$	$I_{s d}=\beta^{*} V_{s d} *\left(2 *\left(V_{s q}-V_{t o}\right)-V_{s d}\right) *\left(1+\lambda * V_{s d}\right)$

Where:

- $V_{t o}$ is the Threshold voltage, VTO parameter value.
- $\beta$ is the Transconductance, BETA parameter value.
- $\lambda$ is the Channel modulation, LAMBDA parameter value.

The block provides the following relationship between the source-drain current $I_{s d}$ and the source-drain voltage $V_{s d}$ in inverse mode ( $V_{s d}<0$ ) after adjusting the applicable model parameters for temperature.

## SPICE PJFET

Applicable   Range of $\boldsymbol{V}_{\text {sg }}$   and $\boldsymbol{V}_{\mathrm{dg}}$ Values	Corresponding $I_{\text {sd }}$ Equation
$V_{d g}-V_{t o} \leq 0$	$I_{s d}=0$
$0<V_{d g}-V_{t o} \leq-V_{s d}$	$I_{s d}=\beta *\left(V_{d g}-V_{t o}\right)^{2} *\left(1-\lambda * V_{s d}\right)$
$0<-V_{s d}<V_{d g}-V_{t o}$	$I_{s d}=\beta * V_{s d} *\left(2 *\left(V_{d g}-V_{t o}\right)+V_{s d}\right) *\left(1-\lambda * V_{s d}\right)$

## Junction Charge Model

The block provides the following relationship between the source-gate charge $Q_{s g}$ and the source-gate voltage $V_{s g}$ after adjusting the applicable model parameters for temperature.

Applicable   Range of $\boldsymbol{V}_{s g}$   Values   $V_{s g}<F C * V J$   $V_{s g} \geq F C * V J$	Corresponding $\mathbf{Q}_{\text {sg }}$ Equation
$C G S * V J *\left(1-\left(1-\frac{V_{s g}}{V J}\right)^{1-M G}\right)$	
$Q_{s g}=C G S *\left(F 1+\frac{\left.F 3^{*}\left(V_{s g}-F C * V J\right)+\frac{M G *\left(V_{s g}^{2}-(F C * V J)^{2}\right)}{2 * V J}\right)}{F 2}\right)$	

## SPICE PJFET

- $F C$ is the Capacitance coefficient FC parameter value.
- VJ is the Junction potential VJ parameter value.
- CGS is the Zero-bias GS capacitance, CGS parameter value.
- $M G$ is the Grading coefficient, MG parameter value.
- $F 1=\frac{V J *\left(1-(1-F C)^{1-M G}\right)}{1-M G}$
- $F 2=(1-F C)^{1+M G}$
- $F 3=1-F C *(1+M G)$

The block provides the following relationship between the drain-gate charge $Q_{d g}$ and the drain-gate voltage $V_{d g}$ after adjusting the applicable model parameters for temperature.

Applicable   Range of $\boldsymbol{V}_{\mathbf{d g}}$   Values	Corresponding $\mathbf{Q}_{\mathbf{d g}}$ Equation
$V_{d g}<F C^{*} V J$	
$\left.Q_{d g}=\frac{C G D^{*} V J *\left(1-\left(1-\frac{V_{d g}}{V J}\right)^{1-M G}\right)}{1-M G}\right)$	
$V_{d g} \geq F C^{*} V J$	$Q_{d g}=C G D^{*}\left(F 1+\frac{F 3^{*}\left(V_{d g}-F C^{*} V J\right)+\frac{M G *\left(V_{d g}^{2}-(F C * V J)^{2}\right)}{2 * V J}}{F 2}\right)$

Where:

## SPICE PJFET

- CGD is the Zero-bias GD capacitance, CGD parameter value.


## Temperature Dependence

Several transistor parameters depend on temperature. There are two ways to specify the transistor temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the transistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- $T_{C}$ is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, $T_{C}$ is the default value of this parameter.
- $T_{O}$ is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the transistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the saturation current $I S$ and the transistor temperature $T$ :

$$
I S(T)=I S *\left(T / T_{\text {meas }}\right)^{\frac{X T I}{N D}} * e^{\left(\frac{T}{T_{\text {meas }}}-1\right) * \frac{E G}{V_{t}}}
$$

where:

- IS is the Saturation current, IS parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.
- XTI is the Saturation current temperature exponent, XTI parameter value.
- $E G$ is the Energy gap, EG parameter value.


## SPICE PJFET

- $V_{t}=N D * k * T / q$
- $N D$ is the Emission coefficient, ND parameter value.

The block provides the following relationship between the junction potential $V J$ and the transistor temperature $T$ :

$$
V J(T)=V J *\left(\frac{T}{T_{\text {meas }}}\right)-\frac{3 * k * T}{q} * \log \left(\frac{T}{T_{\text {meas }}}\right)-\left(\frac{T}{T_{\text {meas }}}\right) * E G_{T_{\text {meas }}}+E G_{T}
$$

where:

- VJ is the Junction potential VJ parameter value.
- $E G_{T_{\text {meas }}}=1.16 \mathrm{eV}-\left(7.02 e-4 * T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 e V-\left(7.02 e-4 * T^{2}\right) /(T+1108)$

The block provides the following relationship between the gate-source junction capacitance $C G S$ and the transistor temperature $T$ :

$$
C G S(T)=C G S *\left[1+M G *\left(400 e-6^{*}\left(T-T_{\text {meas }}\right)-\frac{V J(T)-V J}{V J}\right)\right]
$$

where:

- CGS is the Zero-bias GS capacitance, CGS parameter value.

The block uses the $C G S(T)$ equation to calculate the gate-drain junction capacitance by substituting $C G D$ (the Zero-bias GD capacitance, CGD parameter value) for CGS .
The block provides the following relationship between the forward and reverse beta and the transistor temperature $T$ :

$$
\beta(T)=\beta *\left(\frac{T}{T_{\text {meas }}}\right)
$$

where $\beta$ is the Transconductance, BETA parameter value.

Basic
Assumptions and Limitations

The model is based on the following assumptions:

- The PJFET block does not support noise analysis.
- The PJFET block applies initial conditions across junction capacitors and not across the block ports.


## SPICE PJFET

## Dialog Box and Parameters

Main Tab

Block Parameters: SPICE PJFET				
SPICE PJFET				
This model approximates a SPICE P-channel JFET. You specify both model card and instance parameters as instance parameters on this mask. The instance parameter OFF and noise model parameters KF and AF are not supported. Additional instance parameters are SCALE, TOFFSET, ND, MG, XTI and EG.				
SCALE is the number of parallel JFET instances for this device. SCALE multiplies the output current and device charge directly. This differs from the AREA parameter, which multiples the device parameters BETA, IS, CGS, CGD, and divides RS and RD.				
You can set the JFET temperature to a fixed temperature or to the circuit temperature (from the SPICE Environment Parameters block) plus TOFFSET. The parameters ND, MG, XTI and EG adjust temperature sensitive parameters.				
The block lets you include or exclude capacitance modeling and initial conditions. The capacitance modeling uses the published temperature equations, which may yield a slightly different value than SPICE for capacitance. The initial conditions ICVDS and ICVGS are the voltages across the internal junctions, and are only effective when the corresponding junction capacitances are present.				
Parameters				
Main	Junction Capacitance \|	Temperature		
Device	rea, AREA:	1	$\mathrm{m}^{\wedge} 2$	$\square$
Numb	of parallel devices, SCALE	1		
Thresh	d voltage, VTO:	-2		$\square$
Trans	ductance, BETA :	1e-4	A/m^2/V^2	$\square$
Chann	modulation, LAMBDA:	0	1/V	$\nabla$
Satur	on current, IS:	1e-14	A/m^2	$\square$
Emissi	coefficient, ND:	1		
Sourc	esistance, RS:	1e-4	$\mathrm{m}^{\wedge} 2^{*} \mathrm{Ohm}$	$\square$
Drain	sistance, RD:	0.01	m^2*ohm	$\square$



## Device area, AREA

The transistor area. This value multiplies the Transconductance, BETA, Zero-bias GS capacitance, CGS, Zero-bias GD capacitance, CGD, and Saturation current, IS parameter values. It divides the Source resistance, RS and Drain resistance, RD parameter values. The default value is 1 $\mathrm{m}^{2}$. The value must be greater than 0 .

## SPICE PJFET

## Number of parallel devices, SCALE

The number of parallel transistors the block represents. This value multiplies the output current and device charges. The default value is 1 . The value must be greater than 0 .

## Threshold voltage, VTO

The gate-source voltage above which the transistor produces a nonzero drain current. The default value is -2 V.

## Transconductance, BETA

The derivative of drain current with respect to gate voltage. The default value is $1 \mathrm{e}-04 \mathrm{~A} / \mathrm{m}^{2} / \mathrm{V}^{2}$. The value must be greater than or equal to 0 .

## Channel modulation, LAMBDA

The channel-length modulation. The default value is $01 / \mathrm{V}$.

## Saturation current, IS

The magnitude of the current that the ideal diode equation approaches asymptotically for very large reverse bias levels. The default value is $1 \mathrm{e}-14 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Emission coefficient, ND

The transistor emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

## Source resistance, RS

The transistor source resistance. The default value is $1 \mathrm{e}-4 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

## Drain resistance, RD

The transistor drain resistance. The default value is $0.01 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

## Junction Capacitance Tab



## Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.


## SPICE PJFET

- Yes - Specify zero-bias junction capacitance, junction potential, grading coefficient, forward-bias depletion capacitance coefficient, and transit time.


## Zero-bias GS capacitance, CGS

The value of the capacitance placed between the gate and the source. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 $\mathrm{F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Zero-bias GD capacitance, CGD

The value of the capacitance placed between the gate and the drain. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 $\mathrm{F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Junction potential VJ

The junction potential. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 1 V . The value must be greater than 0.01 V .

## Grading coefficient, MG

The transistor grading coefficient. The default value is 0.5 . The value must be greater than 0 and less than 0.9.

## Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be greater than or equal to 0 and less than or equal to 0.95 .

## Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial diode voltage.


## SPICE PJFET

Note The PJFET block applies the initial diode voltage across the junction capacitors and not across the ports.

## Initial condition voltage ICVDS

Drain-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

## Initial condition voltage ICVGS

Gate-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

## Temperature Tab



## Model temperature dependence using

Select one of the following options for modeling the diode temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature value plus the Offset local circuit temperature, TOFFSET value. The Circuit temperature value comes from the SPICE Environment Parameters block, if


## SPICE PJFET

one exists in the circuit. Otherwise, it comes from the default value for this block.

- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.


## Saturation current temperature exponent, XTI

The order of the exponential increase in the saturation current as temperature increases. The default value is 0 . The value must be greater than or equal to 0 .

## Activation energy, EG

The energy gap that affects the increase in the saturation current as temperature increases. The default value is 1.11 eV . The value must be greater than 0.1 eVi .

## Offset local circuit temperature, TOFFSET

The amount by which the transistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

## Fixed circuit temperature, TFIXED

The temperature at which to simulate the transistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0.

## Parameter extraction temperature, TMEAS

The temperature at which the transistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

## Ports <br> The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

## SPICE PJFET

D
Electrical conserving port associated with the transistor drain terminal.

Electrical conserving port associated with the transistor source terminal.

References [1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 3.

See Also P-Channel JFET, SPICE NJFET

## SPICE PMOS

Purpose	Model SPICE-compatible P-Channel MOSFET		
Library	SPICE-Compatible Components/Semiconductor Devices		
Description	The PMOS block represents a SPICE-compatible P-channel MOSFET.   The PMOS block model includes the following components:   - "Resistance Calculations" on page 1-746   - "Bulk-Source Diode Model" on page 1-747   - "Bulk-Drain Diode Model" on page 1-748   - "Level 1 Drain Current Model" on page 1-749   - "Level 3 Drain Current Model" on page 1-752   - "Junction Charge Model" on page 1-758   - "Temperature Dependence" on page 1-763   Resistance Calculations   The following table shows how the PMOS block calculates the transistor drain resistance. The abbreviations in the table represent the values of the following block parameters:   - Drain resistance, RD   - Sheet resistance, RSH   - Number of drain squares, NRD		
	Drain resistance, RD Parameter	Sheet resistance, RSH Parameter	Drain Resistance
	NaN	NaN	0
	$R D$	NaN or RSH	$R D$
	NaN	RSH	$R S H^{*} N R D$

## SPICE PMOS

The following table shows how the PMOS block calculates the transistor source resistance. The abbreviations in the table represent the values of the following block parameters:

- Source resistance, RS
- Sheet resistance, RSH
- Number of source squares, NRS

Source resistance,   RS Parameter	Sheet resistance,   RSH Parameter	Source Resistance
NaN	NaN	0
$R S$	NaN or $R S H$	$R S$
NaN	$R S H$	$R S H^{*} N R S$

## Bulk-Source Diode Model

The block provides the following relationship between the bulk-source current $I_{s b}$ and the bulk-source voltage $V_{s b}$ after adjusting the applicable model parameters for temperature.

Applicable Range   of $\boldsymbol{V}_{s b}$ Values	Corresponding $\mathbf{I}_{\mathbf{g s}}$ Equation
$V_{s b}>80 * V_{t n}$	$I_{s b}=I S_{s b} *\left(\left(\frac{V_{s b}}{V_{t n}}-79\right) e^{80}-1\right)+V_{s b} * G$ min
$80 V_{t n} \geq V_{s b}$	$I_{s b}=I S_{s b} *\left(e^{V_{s b} / V_{t n}}-1\right)+V_{s b} * G$ min

Where:

- $I S_{s b}$ is
- The product of the Bulk jet sat current density, JS parameter value and the Area of source, AS parameter value if both these


## SPICE PMOS

parameter values and the Area of drain, AD parameter value are nonzero.

- The Bulk saturation current, IS parameter value, otherwise.
- $V_{t n}=N k T / q$
- $q$ is the elementary charge on an electron, $1.6021918 \mathrm{e}-19 \mathrm{C}$.
- $N$ is the Emission coefficient, ND parameter value.
- $k$ is the Boltzmann constant.
- $T$ is the diode temperature:
- If you select Device temperature for the Model temperature dependence using parameter, $T$ is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- If you select Fixed temperature for the Model temperature dependence using parameter, $T$ is the Fixed circuit temperature, TFIXED parameter value.
- GMIN is the diode minimum conductance. By default, GMIN matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change GMIN, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.


## Bulk-Drain Diode Model

The block provides the following relationship between the bulk-drain current $I_{d b}$ and the bulk-drain voltage $V_{d b}$ after adjusting the applicable model parameters for temperature.

## SPICE PMOS

Applicable Range   of $\boldsymbol{V}_{\mathrm{db}}$ Values	Corresponding $\mathbf{I}_{\mathbf{g s}}$ Equation
$V_{d b}>80 * V_{t n}$	$I_{d b}=I S_{d b} *\left(\left(\frac{V_{d b}}{V_{t n}}-79\right) e^{80}-1\right)+V_{d b} * G$ min
$80 V_{t n} \geq V_{d b}$	$I_{d b}=I S_{d b} *\left(e^{V_{d b} / V_{m n}}-1\right)+V_{d b} * G$ min

Where:

- $I S_{d b}$ is
- The product of the Bulk jct sat current density, JS parameter value and the Area of drain, AD parameter value if both these parameter values and the Area of source, AS parameter value are nonzero.
- The Bulk saturation current, IS parameter value, otherwise.


## Level 1 Drain Current Model

The block provides the following relationship between the drain current
$I_{s d}$ and the drain-source voltage $V_{s d}$ in normal mode ( $V_{s d} \geq 0$ ) after adjusting the applicable model parameters for temperature.

## SPICE PMOS

## Normal Mode

Applicable   Range of $\boldsymbol{V}_{\text {sg }}$   and $\boldsymbol{V}_{\text {sd }}$ Values	Corresponding $I_{\text {sd }}$ Equation
$V_{s q}-V_{o n} \leq 0$	$I_{s d}=0$
$0<V_{s q}-V_{o n} \leq V_{s d}$	$I_{\text {sd }}=B E T A *\left(V_{s q}-V_{o n}\right)^{2} \frac{\left(1+L A M B D A^{*} V_{s d}\right)}{2}$
$0<V_{s d}<V_{s g}-V_{o n}$	$\left.\begin{array}{r}I_{s d}=B E T A * \\ V_{s d}\left(\left(V_{s q}-V_{o n}\right)-\frac{V_{s d}}{2}\right)\end{array}\right)\left(1+L A M B D A^{*} V_{s d}\right)$

## Where:

- $V_{o n}$ is:
- MTYPE $* V B I+G A M M A \sqrt{P H I-V_{s b}}$ if $V_{s b} \leq 0$.
- $M T Y P E * V B I+G A M M A\left(\sqrt{P H I}-\frac{V_{s b}}{2 \sqrt{P H I}}\right)$ if $0<V_{s b} \leq 2 * P H I$.
- MTYPE*VBI if $V_{s b}>2^{*} P H I$.
- MTYPE is -1 .
- BETA is $K P^{*} W I D T H /\left(L E N G T H-2^{*} L D\right)$
- $K P$ is:
- The Transconductance, KP parameter value, if this parameter has a numerical value.


## SPICE PMOS

- U0*3.9* $\varepsilon_{0} / T O X$, if Transconductance, KP is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- WIDTH is the Width of channel, WIDTH parameter value.
- LENGTH is the Length of channel, LENGTH parameter value.
- $L D$ is the Lateral diffusion, $L D$ parameter value.
- VBI is an built-in voltage value the block uses in calculations. The value is a function of temperature. For a detailed definition, see "Temperature Dependence" on page 1-681.
- PHI is:
- The Surface potential, PHI parameter value, if this parameter has a numerical value.
- $2 * k T_{\text {meas }} / q * \log \left(N S U B / n_{i}\right)$, if Surface potential, PHI is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- $L A M B D A$ is the Channel modulation, LAMBDA parameter value.
- GAMMA is:
- The Bulk threshold, GAMMA parameter value, if this parameter has a numerical value.
- TOX $* \sqrt{2 * 11.7 * \varepsilon_{0} * q^{*} N S U B} /\left(3.9 * \varepsilon_{0}\right)$, if Bulk threshold, GAMMA is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- $\varepsilon_{0}$ is the permittivity of free space, $8.854214871 \mathrm{e}-12 \mathrm{~F} / \mathrm{m}$.
- $n_{i}$ is the carrier concentration of intrinsic silicon, $1.45 \mathrm{e}^{10} \mathrm{~cm}^{-3}$.

The block provides the following relationship between the drain current
$I_{s d}$ and the drain-source voltage $V_{s d}$ in inverse mode ( $V_{s d}<0$ ) after adjusting the applicable model parameters for temperature.

## SPICE PMOS

## Inverse Mode

Applicable   Range of $\boldsymbol{V}_{\text {dg }}$   and $\boldsymbol{V}_{\text {sd }}$ Values	Corresponding $\boldsymbol{I}_{\text {sd }}$ Equation
$V_{d g}-V_{o n} \leq 0$	$I_{s d}=0$
$0<V_{d g}-V_{o n} \leq-V_{s d}$	$I_{s d}=-B E T A\left(V_{d g}-V_{o n}\right)^{2}\left(1-L A M B D A^{*} V_{s d}\right) / 2$
$0<V_{s d}<V_{d g}-V_{o n}$	$I_{s d}=B E T A *$   $V_{s d}\left(\left(V_{d g}-V_{o n}\right)+V_{s d} / 2\right)\left(1-L A M B D A * V_{s d}\right)$

## Where:

- $V_{o n}$ is:
- $M T Y P E * V B I+G A M M A \sqrt{P H I-V_{d b}}$ if

$$
V_{d b} \leq 0
$$

- $M T Y P E$ * VBI + GAMMA $\left(\sqrt{P H I}-\frac{V_{d b}}{2 \sqrt{P H I}}\right)$ if

$$
0<V_{d b} \leq 2 * P H I
$$

- MTYPE*VBI if $V_{d b}>2^{*}$ PHI.


## Level 3 Drain Current Model

The block provides the following model for drain current $I_{s d}$ in normal mode ( $V_{s d} \geq 0$ ) after adjusting the applicable model parameters for temperature.

## SPICE PMOS

$$
I_{S D}=I_{\text {SDD }} * \text { Scale }_{\text {VMAX }} * \text { Scale }_{\text {LChan }} * \text { Scale }_{\text {INV }}
$$

Where:

- $I_{\text {SDo }}$ is the Basic Drain Current Model.
- Scale $_{\text {VMAX }}$ is the Velocity Saturation Scaling.
- Scale $_{\text {LChan }}$ is the Channel Length Modulation Scaling.
- Scale $_{\text {INV }}$ is the Weak Inversion Scaling.

The blocks uses the same model for drain current in inverse mode
( $V_{\text {sd }}<0$ ), with the following substitutions:

- $V_{s b}-V_{s d}$ for $V_{s b}$
- $V_{s g}-V_{s d}$ for $V_{s d}$
- $-V_{s d}$ for $V_{s d}$


## Basic Drain Current Model

The block provides the following relationship between the drain current $I_{s d}$ and the drain-source voltage $V_{d s}$ :

$$
I_{S D 0}=B E T A * F_{\text {gate }} *\left(V_{S G X}-V_{T H}-\frac{1+F_{B}}{2} * V_{S D X}\right) * V_{S D X}
$$

- The block calculates BETA as described in "Level 1 Drain Current Model" on page 1-749.
- The block calculates $F_{\text {GATE }}$ using the following equation:

$$
F_{\text {gate }}=\frac{1}{1+T H E T A *\left(V_{s g x}-V_{T H}\right)}
$$

- THETA is the Vgs dependence on mobility, THETA parameter value.


## SPICE PMOS

- $V_{s g x}=\max \left(V_{S G}, V_{o n}\right)$
- If you specify a nonzero value for the Fast surface state density, NFS parameter, the block calculates $V_{\text {on }}$ using the following equation:

$$
V_{o n}=V_{T H}+x_{n} V_{T}
$$

Otherwise, $V_{o n}=V_{T H}$.

- The block calculates $x_{n}$ using the following equation:

$$
x_{n}=1+\frac{q * N F S}{C O X}+\frac{\left(G A M M A * F_{s} * \sqrt{V_{\text {bulk }}}+\frac{F_{n} * V_{\text {bulk }}}{W I D T H}\right)}{2 * V_{\text {bulk }}}
$$

- The block calculates $V_{\text {bulk }}$ as follows:
- If $V_{S B} \leq 0, V_{\text {bulk }}=\mathrm{PHI}-V_{B S}$.
- Otherwise, the block calculates $V_{\text {bulk }}$ using the following equation:

$$
V_{\text {bulk }}=\frac{P H I}{\left(1+\frac{V_{S B}}{2 * P H I}\right)^{2}}
$$

- $V_{T}=k T / q$
- The block calculates $V_{T H}$ using the equation following equation:

$$
\begin{aligned}
V_{T H}= & V_{B I}-\frac{8.15 e^{-22} * E T A}{C O X *(L E N G T H-2 * L D)^{3}} * V_{S D} \\
& +G A M M A * F_{s} * \sqrt{V_{\text {bulk }}}+F_{n} * V_{\text {bulk }}
\end{aligned}
$$

- For information about how the block calculates $V_{B D}$, see "Temperature Dependence" on page 1-763.
- ETA is the Vds dependence threshold volt, ETA parameter value.
- $C O X=\varepsilon_{o x} / T O X$, where $\varepsilon_{o x}$ is the permittivity of the oxide and TOX is the Oxide thickness, TOX parameter value.
- If you specify a nonzero value for the Junction depth, XJ parameter and a value for the Substrate doping, NSUB parameter, the block calculates $F_{s}$ using the following equations:

$$
\begin{aligned}
\alpha= & \frac{2 \varepsilon_{s i}}{q N S U B} \\
X D= & \sqrt{\alpha} \\
w c= & .0631353+.8013292 * \frac{X D^{*} \sqrt{V_{\text {bulk }}}}{X J} \\
& -.01110777 *\left(\frac{X D^{*} \sqrt{V_{\text {bulk }}}}{X J}\right)^{2}+\frac{L D}{X J} \\
F_{s}= & 1-\left(w c^{*} \sqrt{1-\left(\frac{X D^{*} \sqrt{V_{\text {bulk }}}}{X J+X D^{*} \sqrt{V_{\text {bulk }}}}\right)^{2}}-\frac{L D}{X J}\right)
\end{aligned}
$$

where $\varepsilon_{s i}$ is the permittivity of silicon.
Otherwise, $F_{s}=1$.

- The block calculates $F_{B}$ using the following equation:

$$
F_{B}=\frac{G A M M A * F_{s}}{4 * \sqrt{V_{b u l k}}}+F_{n}
$$

- The block calculates $F_{n}$ using the following equation:


## SPICE PMOS

$$
F_{n}=\frac{D E L T A * \pi^{*} \varepsilon_{s i}}{2 * C O X * W I D T H}
$$

- DELTA is the Width effect on threshold, DELTA parameter value.
- $V_{S D X}$ is the lesser of $V_{S D}$ and the saturation voltage, $V_{d s a t}$.
- If you specify a positive value for the Max carrier drift velocity, VMAX parameter, the block calculates $V_{d s a t}$ using the following equation:

$$
\begin{aligned}
V_{d s a t}= & \frac{V_{s g x}-V_{T H}}{1+F_{B}}+\frac{(L E N G T H-2 * L D) * V M A X}{U O^{*} F_{g a t e}} \\
& -\sqrt{\left(\frac{V_{s g x}-V_{T H}}{1+F_{B}}\right)^{2}+\left(\frac{(L E N G T H-2 * L D) * V M A X}{U O^{*} F_{g a t e}}\right)^{2}}
\end{aligned}
$$

Otherwise, the block calculates $V_{d s a t}$ using the following equation:

$$
V_{\text {dsat }}=\frac{V_{s g x}-V_{T H}}{1+F_{B}}
$$

## Velocity Saturation Scaling

If you specify a positive value for the Max carrier drift velocity, VMAX parameter, the block calculates Scale ${ }_{V M A X}$ using the following equation:

$$
\text { Scale }_{\text {VMAX }}=\frac{1}{1+\frac{U O^{*} F_{\text {gate }}}{\left(L E N G T H-2^{*} L D\right) * V M A X} * V_{S D X}}
$$

Otherwise, Scale $_{\text {VMAX }}=1$.

## Channel Length Modulation Scaling

The block scales the drain current to account for channel length modulation if the block meets all of the following criteria:

- $V_{S D}>V_{s a t}$
- The Max carrier drift velocity, VMAX parameter value is zero or $a$ is nonzero.

The block scales the drain current using the following equation:

$$
\text { Scale }_{\text {LChan }}=\frac{1}{1-\frac{\Delta l}{\left(L E N G T H-2^{*} L D\right)}}
$$

The block uses the following procedure to calculate $\Delta l$ :
1 The block first calculates the intermediate value $\Delta l_{0}$.

- If you specify a positive value for the Max carrier drift velocity, VMAX parameter, the block computes the intermediate value $g_{d s a t}$ as the greater of $1 \mathrm{e}-12$ and the result of the following equation:

$$
I_{S D 0} *\left(1-\frac{1}{1+\text { Scale }_{g_{d s a t}} * V_{S D X}}\right) * \text { Scale }_{g_{\text {dsat }}}
$$

where:

$$
\text { Scale }_{g_{\text {dsat }}}=\frac{U O * F_{\text {gate }}}{(\text { LENGTH }-2 * L D) * V M A X}
$$

Then, the block uses the following equation to calculate the intermediate value $\Delta l_{0}$ :

## SPICE PMOS

$$
\begin{aligned}
\Delta l_{0}= & \sqrt{\left(\frac{K A^{*} I_{S D}}{2 *(L E N G T H-2 * L D) * g_{d s a t}}\right)^{2}+K A *\left(V_{S D}-V_{d s a t}\right)} \\
& -\frac{K A^{*} I_{S D}}{2 *(L E N G T H-2 * L D) * g_{d s a t}}
\end{aligned}
$$

where $K A$ is the product of the Mobility modulation, KAPPA parameter value and $\alpha$.

- Otherwise, the block uses the following equation to calculate the intermediate value $\Delta l_{0}$ :

$$
\Delta l=\sqrt{K A^{*}\left(V_{S D}-V_{d s a t}\right)}
$$

2 The block checks for punch through and calculates $\Delta l$.

- If $\Delta l_{0}$ is greater than ( $\left.L E N G T H-2^{*} L D\right) / 2$, the block calculates $\Delta l$ using the following equation:

$$
\Delta l=\left(1-\frac{(L E N G T H-2 * L D)}{4 * \Delta l_{0}}\right) *(\text { LENGTH }-2 * L D)
$$

- Otherwise, $\Delta l=\Delta l_{0}$.


## Weak Inversion Scaling

If $V_{S G}$ is less than $V_{o n}$, the block calculates $S c a l e_{I N V}$ using the following equation:

$$
\text { Scale }_{I N V}=e^{\frac{V_{s g}-V_{o n}}{x_{n}^{*} * V_{T}}}
$$

Otherwise, Scale $_{\text {INV }}=1$.

## Junction Charge Model

The block models the following junction charges:

## SPICE PMOS

- Junction Overlap Charges
- Bulk Junction Charges


## Junction Overlap Charges

The block calculates the following junction overlap charges:

- $Q_{S G}=C G S O * W I D T H^{*} V_{s g}$

Where:

- $Q_{S G}$ is the gate-source overlap charge.
- CGSO is the G-S overlap capacitance, CGSO parameter value.
- WIDTH is the Width of channel, WIDTH parameter value.
- $Q_{D G}=C G D O^{*} W I D T H^{*} V_{d g}$

Where:

- $Q_{D G}$ is the gate-drain overlap charge.
- $C G D O$ is the G-D overlap capacitance, CGDO parameter value.
- $Q_{B G}=C G B O^{*}\left(L E N G T H-2^{*} L D\right)^{*} V_{b g}$

Where:

- $Q_{B G}$ is the gate-bulk overlap charge.
- $C G B O$ is the G-B overlap capacitance, CGBO parameter value.
- LENGTH is the Length of channel, LENGTH parameter value.
- $L D$ is the Lateral diffusion, $\mathbf{L D}$ parameter value.


## Bulk Junction Charges

The block provides the following relationship between the bulk-drain bottom junction charge $Q_{\text {bottom }}$ and the junction voltage $V_{d b}$ after adjusting the applicable model parameters for temperature.

## SPICE PMOS

Applicable Range of $\boldsymbol{V}_{\mathrm{db}}$ Values	Corresponding $\mathbf{Q}_{\text {bottom }}$ Equation
$V_{d b}<F C * P B$	$\begin{aligned} & Q_{\text {bottom }}= C B D^{* P B *\left(1-\left(1-\frac{V_{d b}}{P B}\right)^{1-M J}\right)} \\ & Q_{\text {bottom }}=\frac{C J * A D * P B *\left(1-\left(1-\frac{V_{d b}}{P B}\right)^{1-M J}\right)}{1-M J} \text { if } C B D>0 . \\ & \text { otherwise. } \end{aligned}$
$V_{d b} \geq F C^{*} P B$	$\begin{aligned} & Q_{\text {bottom }}=C B D^{*} \\ & \left(F 1+\frac{F 3^{*}\left(V_{d b}-F C * P B\right)+\frac{M J *\left(V_{d b}^{2}-(F C * P B)^{2}\right)}{2 * P B}}{F 2}\right) \end{aligned}$   if $C B D>0$. $\begin{aligned} & Q_{\text {bottom }}=C J * A D^{*} \\ &\left(F 1+\frac{F 3^{*}\left(V_{d b}-F C * P B\right)+\frac{M J *\left(V_{d b}^{2}-(F C * P B)^{2}\right)}{2 * P B}}{F 2}\right) \end{aligned}$   otherwise.

## SPICE PMOS

Where:

- $P B$ is the Bulk junction potential, $\mathbf{P B}$ parameter value.
- $F C$ is the Capacitance coefficient FC parameter value.
- $C B D$ is the Zero-bias BD capacitance, CBD parameter value.
- $C J$ is the Bottom junction cap per area, CJ parameter value.
- $A D$ is the Area of drain, $\mathbf{A D}$ parameter value.
- MJ is the Bottom grading coefficient, MJ parameter value.
- $F 1=\frac{P B^{*}\left(1-(1-F C)^{1-M J}\right)}{1-M J}$
- $F 2=(1-F C)^{1+M J}$
- $F 3=1-F C *(1+M J)$

The block uses the equations in the preceding table to calculate the bulk-source bottom junction charge, with the following substitutions:

- $V_{s b}$ replaces $V_{d b}$.
- $A S$ (the Area of source, AS parameter value) replaces $A D$.
- CBS (the Zero-bias BS capacitance, CBS parameter value) replaces CBD.

The block provides the following relationship between the bulk-drain sidewall junction charge $Q_{\text {sidewall }}$ and the junction voltage $V_{d b}$ after adjusting the applicable model parameters for temperature.

## SPICE PMOS

Applicable   Range of $\boldsymbol{V}_{\mathrm{db}}$   Values	Corresponding $\mathbf{Q}_{\text {sidewall }}$ Equation
$V_{d b}<F C^{*} P B$	$Q_{\text {sidewall }}=\frac{C J S W * P D^{*} P B^{*}\left(1-\left(1-\frac{V_{d b}}{P B}\right)^{1-M J S W}\right)}{1-M J S W}$
$V_{d b} \geq F C^{* P B}$	$Q_{\text {sidewall }}=C J S W * P D^{*}$
$\left(\begin{array}{c}F 1+\frac{F 3^{*}\left(V_{d b}-F C * P B\right)+\frac{M J S W *\left(V_{d b}^{2}-\left(F C^{*} P B\right)^{2}\right)}{2 * P B}}{F 2}\end{array}\right.$	

Where:

- CJSW is the Side jct cap/area of jct perimeter, CJSW parameter value.
- $P D$ is the Perimeter of drain, AD parameter value.
- MJSW is the Side grading coefficient, MJSW parameter value.
- $F 1=\frac{P B^{*}\left(1-(1-F C)^{1-M J S W}\right)}{1-M J S W}$
- $F 2=(1-F C)^{1+M J S W}$
- $F 3=1-F C *(1+M J S W)$


## SPICE PMOS

The block uses the equations in the preceding table to calculate the bulk-source sidewall junction charge and the sidewall junction voltage, with the following substitutions:

- $V_{s b}$ replaces $V_{d b}$.
- $P S$ (the Perimeter of source, PS parameter value) replaces $P D$.


## Temperature Dependence

Several transistor parameters depend on temperature. There are two ways to specify the transistor temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the transistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- $T_{C}$ is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, $T_{C}$ is the default value of this parameter.
- $T_{O}$ is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the transistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the transconductance $K P$ and the transistor temperature $T$ :

$$
K P(T)=\frac{K P}{\left(T / T_{\text {meas }}\right)^{3 / 2}}
$$

where:

## SPICE PMOS

- KP is the Transconductance, KP parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.

The block provides the following relationship between the surface potential $P H I$ and the transistor temperature $T$ :

$$
\begin{gathered}
\operatorname{PHI}(T)=\frac{T}{T_{\text {meas }}}\left(\operatorname{PHI}+\frac{k T_{\text {meas }}}{q}\left(\log \left(\frac{T_{\text {meas }}}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T_{\text {meas }}}}{T_{\text {meas }}}\right)\right)\right) \\
\quad-\frac{k T}{q}\left(\log \left(\frac{T}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T}}{T}\right)\right)
\end{gathered}
$$

where:

- $E G_{T_{\text {meas }}}=1.16 \mathrm{eV}-\left(7.02 e-4 * T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 e V-\left(7.02 e-4 * T^{2}\right) /(T+1108)$

The block provides the following relationship between the built-in voltage VBI and the transistor temperature $T$ :

$$
\begin{aligned}
V B I(T)=V T O & +M T Y P E *\left(\frac{P H I(T)-P H I}{2}-G A M M A \sqrt{P H I}\right) \\
& +\frac{E G_{T_{\text {meas }}}-E G_{T}}{2}
\end{aligned}
$$

where:

- $V T O$ is:
- The Threshold voltage, VTO parameter value, if this parameter has a numerical value.


## SPICE PMOS

- $\Phi-3.25+E G_{T_{\text {meas }}} / 2+$ MTYPE *PHI $/ 2-$ NSS * $q * T O X /\left(3.9 * \varepsilon_{0}\right)$ $+M T Y P E *(G A M M A * \sqrt{P H I}+P H I)$, if Threshold voltage, VTO is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.
- $\Phi$ is:
- 3.2, if $T P G$ (the Gate type?, TPG parameter value) is 0.
- $3.25+E G_{T_{\text {meas }}} / 2-M T Y P E * T P G * E G_{T_{\text {meas }}} / 2$, otherwise.
- GAMMA is:
- The Bulk threshold, GAMMA parameter value, if this parameter has a numerical value.
- TOX $* \sqrt{2 * 11.7 * \varepsilon_{0} * q * N S U B} /\left(3.9 * \varepsilon_{0}\right)$, if Bulk threshold, GAMMA is NaN and you specify values for both the Oxide thickness, TOX and Substrate doping, NSUB parameters.

The block provides the following relationship between the bulk saturation current $I S$ and the transistor temperature $T$ :

$$
I S(T)=I S * e^{\frac{-q E G_{T}}{N D^{*} k T}+\frac{q E G_{T_{\text {meas }}}}{N D^{*} k T_{\text {meas }}}}
$$

where:

- $N D$ is the Emission coefficient, ND parameter value.
- IS is the Bulk saturation current, IS parameter value.

The block provides the following relationship between the bulk junction saturation current density $J S$ and the transistor temperature $T$ :

$$
J S(T)=J S * e^{\frac{-q E G_{T}}{N D^{*} k T}+\frac{q E G_{T_{\text {meas }}}}{N D^{*} k T_{\text {meas }}}}
$$

## SPICE PMOS

where:

- JS is the Bulk jct sat current density, JS parameter value.

The block provides the following relationship between the bulk junction potential $P B$ and the transistor temperature $T$ :

$$
\begin{aligned}
& P B(T)= P B+\frac{k T_{\text {meas }}}{q}\left(\log \left(\frac{T_{\text {meas }}}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T_{\text {meas }}}}{T}\right)\right) \\
& T_{\text {meas }} / T
\end{aligned}
$$

where:

- $P B$ is the Bulk junction potential, $\mathbf{P B}$ parameter value.

The block provides the following relationship between the bulk-drain junction capacitance $C B D$ and the transistor temperature $T$ :

$$
C B D(T)=C B D \frac{p b o+M J *\left(4 * 10^{4} *(T-300.15) * p b o-(P B(T)-p b o)\right)}{p b o+M J *\left(4 * 10^{4} *\left(T_{\text {meas }}-300.15\right) * p b o-(P B-p b o)\right)}
$$

where:

- $C B D$ is the Zero-bias BD capacitance, CBD parameter value.
- MJ is the Bottom grading coefficient, MJ parameter value.
- $p b o=\frac{P B+\frac{k T_{\text {meas }}}{q}\left(\log \left(\frac{T_{\text {meas }}}{300.15}\right)^{3}+\frac{q}{k}\left(\frac{1.115}{300.15}-\frac{E G_{T_{\text {meas }}}}{T}\right)\right)}{T_{\text {meas }} / 300.15}$


## SPICE PMOS

The block uses the $C B D(T)$ equation to calculate:

- The bulk-source junction capacitance by substituting $C B S$ (the Zero-bias BS capacitance, CBS parameter value) for $C B D$.
- The bottom junction capacitance by substituting CJ (the Bottom junction cap per area, CJ parameter value) for $C B D$.

The block provides the following relationship between the sidewall junction capacitance $C J S W$ and the transistor temperature $T$ :

$$
\operatorname{CJSW}(T)=C J S W \frac{p b o+M J S W *\left(4 * 10^{4} *(T-300.15) * p b o-(P B(T)-p b o)\right)}{p b o+M J S W *\left(4 * 10^{4} *\left(T_{\text {meas }}-300.15\right) * p b o-(P B-p b o)\right)}
$$

where:

- MJSW is the Side grading coefficient, MJSW parameter value.


## Basic Assumptions and Limitations

The model is based on the following assumptions:

- The PMOS block does not support noise analysis.
- The PMOS block applies initial conditions across junction capacitors and not across the block ports.


## Model Selection Tab



## MOS model

Select one of the following MOSFET model options:

- Level 1 MOS - Use the "Level 1 Drain Current Model" on page 1-749. This is the default option.
- Level 3 MOS - Use the "Level 3 Drain Current Model" on page 1-752.


## SPICE PMOS

## Dimensions Tab

Bios Block Parameters: SPICE PMOS									
SPICE PMOS   This model approximates a SPICE level 1 or 3 pMOSFET. You specify both model card and instance parameters as instance parameters on this mask. The instance parameter OFF and noise model parameters KF and AF are not supported. SCALE is the number of parallel MOS instances for this device. SCALE multiplies the output current and device charge directly. This differs from the AREA parameter, which multiples the device parameters KP, IS, JS, CBD, CBS, CGSO, CGDO, CGBO, CJ and CJSW and divides the parameters RD, RS and RSH.   You can set the MOS temperature to a fixed temperature or to the circuit temperature (from the SPICE Environment Parameters block) plus TOFFSET. The block lets you include or exclude capacitance modeling and initial conditions. The initial conditions ICVDS, ICVGS and ICVBS are the voltages across the internal junctions, and are only effective when the corresponding junction capacitances are present. If physical parameters VTO, KP, PHI, or GAMMA are assigned a NaN value, they will be calculated from specified process parameters TOX and NSUB. Parameters RD, RS or RSH are not used in block calculations when their value is NaN .									
Parameters									
Model Selection	Dimensions	Resistors	DC currents	C-V	Process	Tempe			
Device area factor, AREA: 1									
Number parallel devices, SCALE:		1							
Length of channel, LENGTH:		$1 \mathrm{e}-4$					m	$\checkmark$	
Width of channel, WIDTH:		$1 \mathrm{e}-4$					m	$\checkmark$	
Area of drain, AD :		0					$m^{\wedge} 2$	$\checkmark$	
Area of source, AS:		0					$\mathrm{m}^{\wedge} 2$		
Perimeter of drain, PD:		0					-	$\checkmark$	
Perimeter of source, PS:		0						$\checkmark$	
					OK	Cancel	Help	Apply	

## Device area factor, AREA

The transistor area. This value multiplies the following parameter values:

- Transconductance, KP
- Bulk saturation current, IS
- Bulk jct sat current density, JS
- Zero-bias BD capacitance, CBD
- Zero-bias BS capacitance, CBS


## SPICE PMOS

- G-S overlap capacitance, CGSO
- G-D overlap capacitance, CGDO
- G-B overlap capacitance, CGBO
- Bottom junction cap per area CJ
- Side jct cap/area of jct perimeter CJSW

It divides the following parameter values:

- Drain resistance, RD
- Source resistance, RS
- Sheet resistance, RSH

The default value is 1 . The value must be greater than 0 .

## Number of parallel devices, SCALE

The number of parallel MOS instances for this device. This parameter multiplies the output current and device charge. The default value is 1 . The value must be greater than 0 .

## Length of channel, LENGTH

Length of the channel between the source and drain. The default value is $1 \mathrm{e}-04 \mathrm{~m}$.

## Width of channel, WIDTH

Width of the channel between the source and drain. The default value is $1 \mathrm{e}-04 \mathrm{~m}$.

Area of drain, AD
Area of the transistor drain diffusion. The default value is $0 \mathrm{~m}^{2}$. The value must be greater than or equal to 0 .

## Area of source, AS

Area of the transistor source diffusion. The default value is $0 \mathrm{~m}^{2}$. The value must be greater than or equal to 0 .

## Perimeter of drain, PD

Perimeter of the transistor drain diffusion. The default value is 0 m .

## Perimeter of source, PS

Perimeter of the transistor source diffusion. The default value is 0 m .

## Resistors Tab



## Drain resistance, RD

The transistor drain ohmic resistance. The default value is $0.01 \Omega$. If you set this parameter to $\mathrm{NaN} \Omega$, this value means

## SPICE PMOS

the parameter is unspecified, so the block calculates the drain resistance as described in "Resistance Calculations" on page 1-746. The value must be equal to 0 or greater than or equal to Rmin. Rmin is a built-in model constant whose value is $1 \mathrm{e}-12$.

## Source resistance, RS

The transistor source ohmic resistance. The default value is $1 \mathrm{e}-4 \Omega$. If you set this parameter to $\mathrm{NaN} \Omega$, this value means the parameter is unspecified, so the block calculates the drain resistance as described in "Resistance Calculations" on page 1-746. The value must be equal to 0 or greater than or equal to Rmin. Rmin is a built-in model constant whose value is $1 \mathrm{e}-12$.

## Sheet resistance, RSH

Resistance per square of the transistor source and drain. The default value is Nan $\Omega$. This value means the parameter is unspecified. The block only uses this parameter value if you do not specify one or both of the Drain resistance, RD and Source resistance, RS parameter values, as described in "Resistance Calculations" on page 1-746. The value must be greater than or equal to 0 .

## Number of drain squares, NRD

Number of squares of resistance that make up the transistor drain diffusion. The default value is 1 . The value must be greater than or equal to 0 . The block only uses this parameter value if you do not specify one or both of the Drain resistance, RD and Source resistance, RS parameter values, as described in "Resistance Calculations" on page 1-746.

## Number of source squares, NRS

Number of squares of resistance that make up the transistor source diffusion. The default value is 1 . The value must be greater than or equal to 0 . The block only uses this parameter value if you do not specify one or both of the Drain resistance, RD and Source resistance, RS parameter values, as described in "Resistance Calculations" on page 1-746.

## SPICE PMOS

## DC Currents Tab



## Threshold voltage, VTO

The gate-source voltage above which the transistor produces a nonzero drain current. The default value is 0 V . If you assign this parameter a value of NaN, the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Temperature Dependence" on page 1-681.

## Transconductance, KP

The derivative of drain current with respect to gate voltage. The default value is $2 e-05 \mathrm{~A} / \mathrm{V}^{2}$. The value must be greater than

## SPICE PMOS

or equal to 0 . If you assign this parameter a value of NaN , the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Level 1 Drain Current Model" on page 1-667 or "Level 3 Drain Current Model" on page 1-752 as appropriate for the selected value of the MOS model parameter.

## Bulk threshold, GAMMA

Body effect parameter, which relates the threshold voltage, VTH, to the body bias, VBS, as described in "Level 1 Drain Current
Model" on page 1-667. The default value is $0 \sqrt{V}$. The value must be greater than or equal to 0 . If you assign this parameter a value of NaN, the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Level 1 Drain Current Model" on page 1-667 or "Level 3 Drain Current Model" on page 1-752 as appropriate for the selected value of the MOS model parameter.

## Surface potential, PHI

Twice the voltage at which the surface electron concentration becomes equal to the intrinsic concentration and the device transitions between depletion and inversion conditions. The default value is 0.6 V . The value must be greater than or equal to 0 . If you assign this parameter a value of NaN , the block calculates the value from the specified values of the Oxide thickness, TOX and Substrate doping, NSUB parameters. For more information about this calculation, see "Level 1 Drain Current Model" on page 1-667 or "Level 3 Drain Current Model" on page 1-752 as appropriate for the selected value of the MOS model parameter.

## Channel modulation, LAMBDA

The channel-length modulation. This parameter is only visible when you select Level 1 MOS for the MOS model parameter. The default value is $01 / \mathrm{V}$.

## SPICE PMOS

## Bulk saturation current, IS

The magnitude of the current that the junction approaches asymptotically for very large reverse bias levels. The default value is $1 \mathrm{e}-14 \mathrm{~A}$. The value must be greater than or equal to 0 .

## Bulk jet sat current density, JS

The magnitude of the current per unit area that the junction approaches asymptotically for very large reverse bias levels. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Emission coefficient, ND

The transistor emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

## Width effect on threshold, DELTA

The factor that controls the effect of transistor width on threshold voltage. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0 .

## Max carrier drift velocity, VMAX

The maximum drift velocity of the carriers. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is $0 \mathrm{~m} / \mathrm{s}$.

## Fast surface state density, NFS

The fast surface state density adjusts the drain current for the mobility reduction caused by the gate voltage. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is $01 / \mathrm{cm}^{2}$.

## Vds dependence threshold volt, ETA

The coefficient that controls how the threshold voltage depends on the drain-source voltage in the drain current calculation. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0 .

## Vgs dependence on mobility, THETA

The coefficient that controls how the mobility affects the gate voltage in the drain current calculation. This parameter is

## SPICE PMOS

only visible when you select Level 3 MOS for the MOS model parameter. The default value is $01 / \mathrm{V}$.

## Mobility modulation, KAPPA

The coefficient that controls how the mobility affects the channel length in the drain current calculation. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0.2 .

## C-V Tab



## SPICE PMOS

## Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.
- Yes - Specify zero-bias junction capacitance, junction potential, grading coefficient, forward-bias depletion and capacitance coefficient.


## G-S overlap capacitance, CGSO

Gate-source capacitance due to the diffusion that occurs when the device operates in depletion mode. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

G-D overlap capacitance, CGDO
Gate-drain capacitance due to the diffusion that occurs when the device operates in depletion mode. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

## G-B overlap capacitance, CGBO

Gate-base capacitance due to the diffusion that occurs when the device operates in depletion mode. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

## Zero-bias BD capacitance, CBD

The value of the capacitance placed between the base and the drain. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0

## SPICE PMOS

F. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

## Zero-bias BS capacitance, CBS

The value of the capacitance placed between the base and the source. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0 F . The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

## Bottom junction cap per area CJ

Zero-bias bulk junction bottom capacitance per junction area. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

## Bottom grading coefficient, MJ

The transistor bottom grading coefficient. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be equal to 0 or less than MGmax. MGmax is a built-in model constant whose value is 0.9 .

Side jct cap/area of jet perimeter CJSW
Zero-bias bulk junction sidewall capacitance per junction perimeter. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}$. The value must be equal to 0 or greater than or equal to Cmin. Cmin is a built-in model constant whose value is $1 \mathrm{e}-18$.

## Side grading coefficient, MJSW

The transistor sidewall grading coefficient. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be equal to 0 or less than MGmax. MGmax is a built-in model constant whose value is 0.9 .

## SPICE PMOS

## Bulk junction potential, PB

The potential across the bulk junction. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.8 V . The value must be equal to 0 or greater than or equal to VJmin. VJmin is a built-in model constant whose value is 0.01 .

## Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select Yes for the Model junction capacitance parameter. The default value is 0.5 . The value must be equal to 0 or less than or equal to FCmax. FCmax is a built-in model constant whose value is 0.95 .

## Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial diode voltage.

Note The PMOS block applies the initial diode voltage across the junction capacitors and not across the ports.

## Initial condition voltage ICVDS

Drain-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and $Y e s$ for the Specify initial condition parameter. The default value is 0 V .

## Initial condition voltage ICVGS

Gate-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction

## SPICE PMOS

capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

## Initial condition voltage ICVBS

Bulk-source voltage at the start of the simulation. This parameter is only visible when you select Yes for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

## Process Tab



## SPICE PMOS

## Oxide thickness, TOX

Thickness of the gate oxide. The default value is NaN m . The value must be greater than or equal to 0 .

Note When you select Level 3 MOS for the MOS model parameter, the block uses a value of 1e-7 rather than NaN by default.

## Lateral diffusion, LD

Length of lateral diffusion. The default value is 0 m .

## Substrate doping, NSUB

Substrate doping. The default value is $\mathrm{NaN} 1 / \mathrm{cm}^{3}$. The value must be greater than or equal to 1.45 e 10 (the carrier concentration of intrinsic silicon).

## Surface state density, NSS

Substrate doping. The default value is $01 / \mathrm{cm}^{2}$.

## Surface mobility, U0

Zero-bias surface mobility coefficient. The default value is 600 $\mathrm{cm}^{2} / \mathrm{V} / \mathrm{s}$.

## Junction depth, XJ

Junction depth. This parameter is only visible when you select Level 3 MOS for the MOS model parameter. The default value is 0 m .

## Gate type?,TPG

Select one of the following MOSFET gate materials (as compared to the substrate):

- Opposite of substrate - The gate material is the opposite of the substrate. This means that TPG $=1$ in the device equations. This is the default option.
- Same as substrate - The gate material is the same as the substrate. This means that TPG $=-1$ in the device equations.


## SPICE PMOS

- Aluminum - The gate material is aluminum. This means that $T P G=0$ in the device equations.


## Temperature Tab



## Model temperature dependence using

Select one of the following options for modeling the diode temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature value plus the Offset local circuit temperature, TOFFSET value. The Circuit temperature value comes from the SPICE Environment Parameters block, if


## SPICE PMOS

one exists in the circuit. Otherwise, it comes from the default value for this block.

- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.


## Offset local circuit temperature, TOFFSET

The amount by which the transistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

Fixed circuit temperature, TFIXED
The temperature at which to simulate the transistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0 .

## Parameter extraction temperature, TMEAS

The temperature at which the transistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

## Ports The block has the following ports:

G
Electrical conserving port associated with the transistor gate terminal.

D
Electrical conserving port associated with the transistor drain terminal.

S
Electrical conserving port associated with the transistor source terminal.

B
Electrical conserving port associated with the transistor bulk terminal.

## SPICE PMOS

References [1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 3.

See Also SPICE NMOS

## Purpose

Model Gummel-Poon PNP Transistor

## Library

Description
SPICE-Compatible Components/Semiconductor Devices

The PNP block represents a SPICE-compatible four-terminal Gummel-Poon PNP transistor. The substrate port is connected to the transistor body using a capacitor, so these devices are equivalent to a three-terminal transistor when you connect the substrate port to any other port and use the default value of zero for the $\mathbf{C - S}$ junction capacitance, CJS parameter.

The PNP block model includes the following components:

- "Current-Voltage and Base Charge Model" on page 1-785
- "Base Resistance Model" on page 1-789
- "Transit Charge Modulation Model" on page 1-789
- "Junction Charge Model" on page 1-790
- "Temperature Dependence" on page 1-792


## Current-Voltage and Base Charge Model

The current-voltage relationships and base charge relationships for the transistor are calculated after adjusting the applicable model parameters for temperature as described in the following sections:

- Emitter-Base and Collector-Base Junction Currents on page 785
- Terminal Currents on page 788
- Base Charge Model on page 788


## Emitter-Base and Collector-Base Junction Currents

The base-emitter junction current is calculated using the following equations:

- When $V_{E B}>80 * V_{T F}$ :

$$
\begin{aligned}
& I_{e b f}=I S *\left(\left(\frac{V_{E B}}{V_{T F}}-79\right) * e^{80}-1\right)+G_{\min } * V_{E B} \\
& I_{e b e}=I S E *\left(\left(V_{E B}-80 * V_{T F}+V_{T E}\right) * \frac{e^{\left(80 * V_{T F} V_{T E}\right)}}{V_{T E}}-1\right)
\end{aligned}
$$

- When $V_{E B} \leq 80 * V_{T F}$

$$
\begin{aligned}
& I_{e b f}=I S *\left(e^{\left(V_{E B} V_{T F}\right)}-1\right)+G_{\min } * V_{E B} \\
& I_{\text {ebe }}=I S E *\left(e^{\left(V_{E B} V_{T E}\right)}-1\right)
\end{aligned}
$$

The base-collector junction current is calculated using the following equations:

- When $V_{C B}>80 * V_{T R}$ :

$$
\begin{aligned}
& I_{c b r}=I S *\left(\left(\frac{V_{C B}}{V_{T R}}-79\right) * e^{80}-1\right)+G_{\min } * V_{C B} \\
& I_{c b c}=I S C *\left(\left(V_{C B}-80 * V_{T R}+V_{T C}\right) * \frac{e^{\left(80 * V_{T R} V_{T C}\right)}}{V_{T C}}-1\right)
\end{aligned}
$$

- When $V_{C B} \leq 80^{*} V_{T R}$

$$
\begin{aligned}
& I_{c b r}=I S *\left(e^{\left(V_{C B} V_{T R}\right)}-1\right)+G_{\min } * V_{C B} \\
& I_{c b c}=I S C *\left(e^{\left(V_{C B} V_{T C}\right)}-1\right)
\end{aligned}
$$

In the preceding equations:

## SPICE PNP

- $V_{E B}$ is the emitter-base voltage and $V_{C B}$ is the collector-base voltage.
$V_{T E}=N E * k * T / q, V_{T C}=N C * k * T / q, V_{T F}=N F * k * T / q$, and
$V_{\text {TR }}=N R^{*} k * T / q$.
- ISC and ISE are the B-C leakage current, ISC and B-E leakage current, ISE parameter values, respectively.
- $N E, N C, N F$, and $N R$ are the B-E emission coefficient, NE, B-C emission coefficient, NC, Forward emission coefficient, NF and Reverse emission coefficient, NR parameter values, respectively.
- $q$ is the elementary charge on an electron.
- $k$ is the Boltzmann constant.
- $T$ is the transistor temperature:
- If you select Device temperature for the Model temperature dependence using parameter, $T$ is the sum of the Circuit temperature value plus the Offset local circuit temperature, TOFFSET parameter value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.
- If you select Fixed temperature for the Model temperature dependence using parameter, $T$ is the Fixed circuit temperature, TFIXED parameter value.
- $G_{m i n}$ is the minimum conductance. By default, $G_{\text {min }}$ matches the Minimum conductance GMIN parameter of the SPICE Environment Parameters block, whose default value is $1 \mathrm{e}-12$. To change $G_{m i n}$, add a SPICE Environment Parameters block to your model and set the Minimum conductance GMIN parameter to the desired value.


## Terminal Currents

The terminal currents, $I_{B}$ and $I_{C}$ are the base and collector currents, defined as positive into the device. They are calculated as:

$$
\begin{aligned}
& I_{B}=-\left(\frac{I_{e b f}}{B F}+I_{e b e}+\frac{I_{c b r}}{B R}+I_{c b c}\right) \\
& I_{C}=-\left(\frac{I_{e b f}-I_{c b r}}{q_{b}}-\frac{I_{c b r}}{B R}-I_{\mathrm{cbc}}\right)
\end{aligned}
$$

where $B F$ and $B R$ are the Forward beta, BF and Reverse beta, BR parameter values, respectively.

## Base Charge Model

The base charge, $q_{b}$, is calculated using the following equations:

$$
\begin{aligned}
& q_{b}=\frac{q_{1}}{2}\left(1+\sqrt{0.5 *\left(\sqrt{\left(1+4^{*} q_{2}-e p s\right)^{2}+e p s^{2}}+1+4^{*} q_{2}-e p s\right)+e p s}\right) \\
& q_{1}=\left(1-\frac{V_{C B}}{V A F}-\frac{V_{E B}}{V A R}\right)^{-1} \\
& q_{2}=\frac{I_{e b f}}{I K F}+\frac{I_{c b r}}{I K R}
\end{aligned}
$$

where

- $V A F$ and $V A R$ are the Forward Early voltage, VAF and Reverse Early voltage, VAR parameters, respectively.
- IKF and $I K R$ are the Forward knee current, IKF and Reverse knee current, IKR parameter values, respectively.
- eps is $1 \mathrm{e}-4$.


## Base Resistance Model

The block models base resistance in one of two ways:

- If you use the default value of infinity for the Half base resistance cur, IRB parameter, the PNP block calculates the base resistance $r_{b b}$ as

$$
r_{b b}=R B M+\frac{R B-R B M}{q_{b}}
$$

where:

- $R B M$ is the Minimum base resistance, RBM parameter value.
- $R B$ is the Zero-bias base resistance, RB parameter value.
- If you specify a finite value for the Half base resistance cur, IRB parameter, the PNP block calculates the base resistance $r_{b b}$ as

$$
r_{b b}=R B M+3 *(R B-R B M) *\left(\frac{\tan z-z}{z * \tan ^{2} z}\right)
$$

where:

$$
z=\frac{\sqrt{1+144 I_{B} /\left(\pi^{2} I R B\right)}-1}{\left(24 / \pi^{2}\right) \sqrt{\left(I_{B} / I R B\right)}}
$$

## Transit Charge Modulation Model

If you specify nonzero values for the Coefficient of TF, XTF parameter, the block models transit charge modulation by scaling the Forward transit time, TF parameter value as follows:

$$
T F_{\bmod }=\frac{T F *\left[1+X T F * e^{V_{C B}\left(1.44 V_{T F}\right)}\left(\frac{I_{E B}}{I_{E B}+I T F}\right)^{2}\right]}{q_{b}}
$$

where ITF is the Coefficient of TF, ITF parameter value.

## Junction Charge Model

The PNP block lets you model junction charge. The collector-base charge $Q_{c b}$ and the emitter-base charge $Q_{e b}$ depend on an intermediate value, $Q_{d e p}$ as follows, after adjusting the applicable model parameters for temperature:

- For the internal base-emitter junctions:

$$
Q_{e b}=T F_{\bmod } * I_{e b}+Q_{d e p}
$$

- For the internal base-collector junctions:

$$
Q_{c b}=T R^{*} I_{c b}+X C J C * Q_{d e p}
$$

- For the external base-collector junctions:

$$
Q_{c b_{e t e}}=(1-X C J C) * Q_{d e p}
$$

$Q_{d e p}$ depends on the junction voltage, $V_{j c t}\left(V_{E B}\right.$ for the emitter-base junction and $V_{C B}$ for the collector-base junction) as follows.

## SPICE PNP

Applicable   Range of $\boldsymbol{v}_{\text {ict }}$   Values	Corresponding $\mathbf{Q}_{\text {dep }}$ Equation
$V_{\text {jct }}<F C^{*} V J$	$Q_{\text {dep }}=C_{\text {jct }} * V J * \frac{1-\left(1-V_{\text {jct }} / V J\right)^{(1-M J)}}{1-M J}$
$V_{j c t} \geq F C^{*} V J$	$Q_{\text {dep }}=C_{j c t} *\left[F 1+\frac{\left.F 3 *\left(V_{\text {jct }}-F C * V J\right)+\frac{M J *\left[V_{\text {jct }}{ }^{2}-\left(F C^{*} V J\right)^{2}\right]}{2 * V J}\right]}{F 2}\right]$
	Where:

- $F C$ is the Capacitance coefficient FC parameter value.
- VJ is:
- The B-E built-in potential, VJE parameter value for the emitter-base junction.
- The B-C built-in potential, VJC parameter value for the collector-base junction.
- $M J$ is:
- The B-E exponential factor, MJE parameter value for the emitter-base junction.
- The B-C exponential factor, MJC parameter value for the collector-base junction.
- $C_{j c t}$ is:
- The B-E depletion capacitance, CJE parameter value for the emitter-base junction.


## SPICE PNP

- The B-C depletion capacitance, CJC parameter value for the collector-base junction.
- $F 1=V J *\left(1-(1-F C)^{(1-M J)}\right) /(1-M J)$
- $F 2=(1-F C)^{(1+M J)}$
- $F 3=1-F C^{*}(1+M J)$

The collector-substrate charge $Q_{s c}$ depends on the collector-substrate voltage $V_{s c}$ as follows, after adjusting the applicable model parameters for temperature.

Applicable   Range of $\boldsymbol{V}_{s c}$   Values	Corresponding $\mathbf{Q}_{s c}$ Equation
$V_{s c}<0$	$Q_{s c}=C J S * V J S *\left(\frac{1-\left(1-V_{s c} / V J S\right)^{(1-M J S)}}{1-M J S}\right)$
$V_{s c} \geq 0$	$Q_{s c}=C J S *\left(1+M J S * V_{s c} /(2 * V J S)\right) * V_{s c}$
where:	

- CJS is the C-S junction capacitance, CJS parameter value.
- VJS is the Substrate built-in potential, VJS parameter value.
- MJS is the Substrate exponential factor, MJS parameter value.


## Temperature Dependence

Several transistor parameters depend on temperature. There are two ways to specify the transistor temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the transistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- $T_{C}$ is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, $T_{C}$ is the default value of this parameter.
- $T_{O}$ is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the transistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block provides the following relationship between the saturation current $I S$ and the transistor temperature $T$ :

$$
I S(T)=I S *\left(T / T_{\text {meas }}\right)^{X T I} * e^{\left(\frac{T}{T_{\text {meas }}}-1\right) * \frac{E G}{V_{t}}}
$$

where:

- IS is the Transport saturation current, IS parameter value.
- $T_{\text {meas }}$ is the Parameter extraction temperature, TMEAS parameter value.
- XTI is the Temperature exponent for IS, XTI parameter value.
- $E G$ is the Energy gap, EG parameter value.
- $V_{t}=k T / q$.

The block provides the following relationship between the base-emitter junction potential VJE and the transistor temperature $T$ :

## SPICE PNP

$$
\operatorname{VJE}(T)=V J E *\left(\frac{T}{T_{\text {meas }}}\right)-\frac{3^{*} k^{*} T}{q} * \log \left(\frac{T}{T_{\text {meas }}}\right)-\left(\frac{T}{T_{\text {meas }}}\right) * E G_{T_{\text {meas }}}+E G_{T}
$$

where:

- $V J E$ is the B-E built-in potential, VJE parameter value.
- $E G_{T_{\text {mess }}}=1.16 \mathrm{eV}-\left(7.02 e-4^{*} T_{\text {meas }}{ }^{2}\right) /\left(T_{\text {meas }}+1108\right)$
- $E G_{T}=1.16 \mathrm{eV}-\left(7.02 \mathrm{e}-4 * T^{2}\right) /(T+1108)$

The block uses the $\operatorname{VJE}(T)$ equation to calculate the base-collector junction potential by substituting VJC (the B-C built-in potential, VJC parameter value) for VJE.

The block provides the following relationship between the base-emitter junction capacitance CJE and the transistor temperature $T$ :

$$
\operatorname{CJE}(T)=\operatorname{CJE} *\left[1+\operatorname{MJE} *\left(400 e-6 *\left(T-T_{\text {meas }}\right)-\frac{V J E(T)-V J E}{V J E}\right)\right]
$$

where:

- CJE is the B-E depletion capacitance, CJE parameter value.
- MJE is the B-E exponential factor, MJE parameter value.

The block uses this equation to calculate the base-collector junction capacitance by substituting $C J C$ (the B-C depletion capacitance, CJC parameter value) for CJE and MJC (the B-C exponential factor, MJC parameter value) for MJE.

The block provides the following relationship between the forward and reverse beta and the transistor temperature $T$ :

## SPICE PNP

$$
\beta(T)=\beta *\left(\frac{T}{T_{\text {meas }}}\right)^{X T B}
$$

where:

- $\beta$ is the Forward beta, BF or Reverse beta, BR parameter value.
- XTB is the Beta temperature exponent, XTB parameter value.

The block provides the following relationship between the base-emitter leakage current ISE and the transistor temperature $T$ :

$$
\operatorname{ISE}(T)=\operatorname{ISE} *\left(\frac{T}{T_{\text {meas }}}\right)^{-\mathrm{XTB}} *\left(\frac{\mathrm{IS}(\mathrm{~T})}{\mathrm{IS}}\right)^{1 / N E}
$$

where:

- ISE is the B-E leakage current, ISE parameter value.
- $N E$ is the B-E emission coefficient, NE parameter value.

The block uses this equation to calculate the base-collector leakage current by substituting ISC (the B-C leakage current, ISC parameter value) for $I S E$ and $N C$ (the B-C emission coefficient, NC parameter value) for $N E$.

## Basic Assumptions and Limitations

The model is based on the following assumptions:

- The PNP block does not support noise analysis.
- The PNP block applies initial conditions across junction capacitors and not across the block ports.


## Dialog <br> Box and Parameters

Main Tab


## Device area, AREA

The transistor area. This value multiplies the following parameter values:

- Transport saturation current, IS
- Forward knee current, IKF
- B-E leakage current, ISE
- Reverse knee current, IKR
- B-C leakage current, ISC
- Half base resistance cur, IRB
- B-E depletion capacitance, CJE
- Coefficient of TF, ITF
- B-C depletion capacitance, CJC
- C-S junction capacitance, CJS

It divides the following parameter values:

- Zero-bias base resistance, RB
- Minimum base resistance, RBM
- Emitter resistance, RE
- Collector resistance, RC

The default value is $1 \mathrm{~m}^{2}$. The value must be greater than 0 .
Number of parallel devices, SCALE
The number of parallel transistors the block represents. This value multiplies the output current and device charges. The default value is 1 . The value must be greater than 0 .

## Forward Gain Tab

Block Parameters: SPICE PNP								
SPICE PNP   This model approximates a SPICE PNP transistor. You specify both model card and instance parameters as instance parameters on this mask. The instance parameters PTF and OFF and noise model parameters KF and AF are not supported.   SCALE is the number of parallel BJT instances for this device. SCALE multiplies the output current and device charge directly. This differs from the AREA parameter, which multiples the device parameters $\operatorname{IS}$, IKF, ISE, IKR, ISC, IRB, CJE, ITF, CJC and CJS, and divides the parameters RB, RBM, RE and RC.   You can set the BJT temperature to a fixed temperature or to the circuit temperature (from the SPICE Environment Parameters block) plus TOFFSET. The parameters XTB, XTI and EG adjust temperature sensitive parameters.   The block lets you include or exclude capacitance modeling and initial conditions. The capacitance modeling uses the published temperature equations, which may yield a slightly different value than SPICE for capacitance. The initial conditions ICVBE and ICVCE are the voltages across the internal junctions, and are only effective when the corresponding junction capacitances are present.								
Parameters								
Main	Forward Gain	Reve	Resistors	Capacitance	ure \|			
Transport saturation current, IS:			1e-16			A/m^2	$\checkmark$	
Forward beta, BF:			100					
Forward emission coefficient, NF:			1					
B-E leakage current, ISE:			0			A/m^2	$\square$	
B-E emission coefficient, NE :			1.5					
Forward knee current, IKF:			Inf			A/m^2	$\square$	
Forward Early voltage, VAF:			Inf			V		
					Cancel	Help	Apply	

## Transport saturation current, IS

The magnitude of the current at which the transistor saturates. The default value is $1 \mathrm{e}-16 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Forward beta, BF

The ideal maximum reverse beta. The default value is 100 . The value must be greater than 0 .

## SPICE PNP

## Forward emission coefficient, NF

The reverse emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

## B-E leakage current, ISE

The base-emitter leakage current. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## B-E emission coefficient, NE

The base-collector emission coefficient or ideality factor. The default value is 1.5 . The value must be greater than 0 .

Forward knee current, IKF
The current value at which forward-beta high-current roll-off occurs. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 . For this parameter, the software interprets a value of 0 as infinity.

## Forward Early voltage, VAF

The forward Early voltage. The default value is 0 V . The value must be greater than or equal to 0 . For this parameter, the software interprets a value of 0 as infinity.

## Reverse Gain Tab



## Reverse beta, BR

The ideal maximum reverse beta. The default value is 1 . The value must be greater than 0 .

## Reverse emission coefficient, NR

The reverse emission coefficient or ideality factor. The default value is 1 . The value must be greater than 0 .

## B-C leakage current, ISC

The base-collector leakage current. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## SPICE PNP

## B-C emission coefficient, NC

The base-collector emission coefficient or ideality factor. The default value is 2 . The value must be greater than 0 .

## Reverse knee current, IKR

The current value at which reverse-beta high-current roll-off occurs. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 . For this parameter, the software interprets a value of 0 as infinity.

## Reverse Early voltage, VAR

The reverse Early voltage. The default value is 0 V. The value must be greater than or equal to 0 . For this parameter, the software interprets a value of 0 as infinity.

## Resistors Tab



## Emitter resistance, RE

The resistance of the emitter. The default value is $1 \mathrm{e}-4 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

## Collector resistance, RC

The resistance of the collector. The default value is $0.01 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

## Zero-bias base resistance, RB

The resistance of the base. The default value is $1 \mathrm{~m}^{2 *} \Omega$. The value must be greater than or equal to 0 .

## Minimum base resistance, RBM

The minimum resistance of the base. The default value is $0 \mathrm{~m}^{2 *} \Omega$. The value must be less than or equal to the Zero-bias base resistance, RB parameter value.

## Half base resistance cur, IRB

The base current at which the base resistance has dropped to half of its zero-bias value. The default value is Inf $A / \mathrm{m}^{2}$. The value must be greater than or equal to 0 . Use the default value of Inf if you do not want to model the change in base resistance as a function of base current.

## Capacitance Tab



## SPICE PNP

## Model junction capacitance

Select one of the following options for modeling the junction capacitance:

- No - Do not include junction capacitance in the model. This is the default option.
- B-E Capacitance - Model the junction capacitance across the base-emitter junction.
- B-C Capacitance - Model the junction capacitance across the base-collector junction.
- C-S Capacitance - Model the junction capacitance across the collector-substrate junction.

Note To include junction capacitance in the model:
1 Select B-E Capacitance and specify the base-emitter junction capacitance parameters.

2 Select B-C Capacitance and specify the base-collector junction capacitance parameters.

3 Select C-S Capacitance and specify the collector-substrate junction capacitance parameters.

You can specify or change any of the common parameters when you select any of the preceding options for the Model junction capacitance parameter.

## B-E depletion capacitance, CJE

The depletion capacitance across the base-emitter junction. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## B-E built-in potential, VJE

The base-emitter junction potential. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0.75 V . The value must be greater than or equal to 0.01 V .

## B-E exponential factor, MJE

The grading coefficient for the base-emitter junction. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0.33 . The value must be greater than or equal to 0 and less than or equal to 0.9.

## Forward transit time, TF

The transit time of the minority carriers that cause diffusion capacitance when the base-emitter junction is forward-biased. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 .

## Coefficient of TF, XTF

The coefficient for the base-emitter and base-collector bias dependence of the transit time, which produces a charge across the base-emitter junction. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 . Use the default value of 0 if you do not want to model the effect of base-emitter bias on transit time.

## VBC dependence of TF, VTF

The coefficient for the base-emitter bias dependence of the transit time. This parameter is only visible when you select B-E Capacitance for the Model junction capacitance parameter. The default value is 0 V . The value must be greater than or equal to 0 . For this parameter, the software interprets a value of 0 as infinity.

## SPICE PNP

## Coefficient of TF, ITF

The coefficient for the dependence of the transit time on collector current. This parameter is only visible when you select $B-E$ Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~A} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 . Use the default value of 0 if you do not want to model the effect of collector current on transit time.

## B-C depletion capacitance, CJC

The depletion capacitance across the base-collector junction. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than 0 .

B-C built-in potential, VJC
The base-collector junction potential. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0.75 V . The value must be greater than or equal to 0.01 V .

## B-C exponential factor, MJC

The grading coefficient for the base-collector junction. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0.33 . The value must be greater than or equal to 0 and less than or equal to 0.9.

## B-C capacitance fraction, XCJC

The fraction of the base-collector depletion capacitance that is connected between the internal base and the internal collector. The rest of the base-collector depletion capacitance is connected between the external base and the internal collector. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 and less than or equal to 1 .

## SPICE PNP

## Reverse transit time, TR

The transit time of the minority carriers that cause diffusion capacitance when the base-collector junction is reverse-biased. This parameter is only visible when you select B-C Capacitance for the Model junction capacitance parameter. The default value is 0 s . The value must be greater than or equal to 0 .

## Capacitance coefficient FC

The fitting coefficient that quantifies the decrease of the depletion capacitance with applied voltage. This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance parameter. The default value is 0.5 . The value must be greater than or equal to 0 and less than or equal to 0.95 .

## Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial transistor conditions.

Note The PNP block applies the initial transistor voltages across the junction capacitors and not across the ports.

This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance parameter.

## Initial condition voltage ICVBE

Base-emitter voltage at the start of the simulation. This parameter is only visible when you select B-E Capacitance or B-C Capacitance for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

## SPICE PNP

## Initial condition voltage ICVCE

Base-collector voltage at the start of the simulation. This parameter is only visible when you select B-E Capacitance or $B-C$ Capacitance for the Model junction capacitance and Yes for the Specify initial condition parameter. The default value is 0 V .

## C-S junction capacitance, CJS

The collector-substrate junction capacitance. This parameter is only visible when you select C-S Capacitance for the Model junction capacitance parameter. The default value is $0 \mathrm{~F} / \mathrm{m}^{2}$. The value must be greater than or equal to 0 .

## Substrate built-in potential, VJS

The potential of the substrate. This parameter is only visible when you select C-S Capacitance for the Model junction capacitance parameter. The default value is 0.75 V .

## Substrate exponential factor, MJS

The grading coefficient for the collector-substrate junction. This parameter is only visible when you select C-S Capacitance for the Model junction capacitance parameter. The default value is 0 . The value must be greater than or equal to 0 and less than or equal to 0.9.

## Temperature Tab



## Model temperature dependence using

Select one of the following options for modeling the transistor temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature value plus the Offset local circuit temperature, TOFFSET value. The Circuit temperature value comes from the SPICE Environment Parameters block, if one exists in the circuit. Otherwise, it comes from the default value for this block.


## SPICE PNP

- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.


## Beta temperature exponent, XTB

The forward and reverse beta temperature exponent that models base current temperature dependence. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 . The value must be greater than or equal to 0 .

Energy gap, EG
The energy gap that affects the increase in the saturation current as temperature increases. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 1.11 eV . The value must be greater than or equal to 0.1 .

## Temperature exponent for IS, XTI

The order of the exponential increase in the saturation current as temperature increases. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 3 . The value must be greater than or equal to 0 .

Offset local circuit temperature, TOFFSET
The amount by which the transistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

Parameter extraction temperature, TMEAS
The temperature at which the transistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

Fixed circuit temperature, TFIXED
The temperature at which to simulate the transistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0 .
Ports The block has the following ports:BElectrical conserving port associated with the transistor baseterminal.Electrical conserving port associated with the transistor collectorterminal.
E
Electrical conserving port associated with the transistor emitter terminal.
Electrical conserving port associated with the transistor substrate terminal.
References

[1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling
with SPICE. 2nd Edition, McGraw-Hill, 1993. Chapter 2.

See Also Generic Linear Actuator

## SPICE Resistor

## Purpose Model SPICE-compatible resistor <br> Library <br> SPICE-Compatible Components/Passive Devices

Description The SPICE Resistor block represents a SPICE-compatible resistor. You $\pm$ can specify the resistance in one of the following ways:

- As a resistance value
- As process information that the block uses to calculate a resistance value

The block models temperature dependence. There are two ways to specify the resistor temperature:

- When you select Device temperature for the Model temperature dependence using parameter, the resistor temperature is

$$
T=T_{C}+T_{O}
$$

where:

- $T_{C}$ is the Circuit temperature parameter value from the SPICE Environment Parameters block. If this block doesn't exist in the circuit, $T_{C}$ is the default value of this parameter.
- $T_{O}$ is the Offset local circuit temperature, TOFFSET parameter value.
- When you select Fixed temperature for the Model temperature dependence using parameter, the resistor temperature is the Fixed circuit temperature, TFIXED parameter value.

The block adjusts the specified or calculated resistance value for temperature using the following equation:

$$
R=R_{0}\left(1+T C 1\left(T-T_{n o m}\right)+T C 2\left(T-T_{n o m}\right)^{2}\right)
$$

Where

## SPICE Resistor

- $R_{0}$ is the specified or calculated resistance value.
- TC1 is the First order temperature coefficient, TC1 parameter value.
- $T C 2$ is the Second order temperature coefficient, TC2 parameter value.
- $T_{\text {nom }}$ is the Parameter extraction temperature, TMEAS parameter value.


## Dialog Box and Parameters

## Resistance Tab



## Device scale factor, SCALE

The number of parallel resistors that the block represents. This value multiplies the output current. The default value is 1 .

## Resistor parameterization

Select one of the following options for specifying the resistor value:

## SPICE Resistor

- Use specified resistance - Provide the resistance value directly. This option is the default.
- Calculate from process information - Provide process parameters that the block uses to calculate the resistance value.
When you select this option, the block calculates the resistance using the following equation:

$$
R=R S H * \frac{(L E N G T H-N A R R O W)}{(W I D T H-N A R R O W)}
$$

where:

- RSH is the Sheet resistance, $\mathbf{R S H}$ parameter value.
- LENGTH is the Resistor length, LENGTH parameter value.
- WIDTH is the Resistor width, WIDTH parameter value.
- NARROW is the Etch narrowing, NARROW parameter value.


## Resistance, $\mathbf{R}$

Resistance value. This parameter is only visible when you select Use specified resistance for the Resistor parameterization parameter. The default value is $0 \Omega$.
Sheet resistance, RSH
Resistance per square of the resistor. This parameter is only visible when you select Calculate from process information for the Resistor parameterization parameter. The default value is $0 \Omega$.

## Resistor length, LENGTH

Length dimension of the resistor. This parameter is only visible when you select Calculate from process information for the Resistor parameterization parameter. The default value is $1 \mathrm{e}-06 \mathrm{~m}$.

## SPICE Resistor

## Resistor width, WIDTH

Width dimension of the resistor. This parameter is only visible when you select Calculate from process information for the Resistor parameterization parameter. The default value is 1e-06m.

## Etch narrowing, NARROW

Amount by which the resistor length and width are reduced due to side etching. This parameter is only visible when you select Calculate from process information for the Resistor parameterization parameter. The default value is 0 m .

## Temperature Tab



## First order temperature coefficient, TC1

Coefficient for the linear term in the equation that the block uses to adjust the specified or calculated resistance value for temperature. The default value is $01 / \mathrm{K}$.

## SPICE Resistor

## Second order temperature coefficient, TC2

Coefficient for the quadratic term in the equation the block uses to adjust the specified or calculated resistance value for temperature. The default value is $01 / \mathrm{K}^{2}$.

## Model temperature dependence using

Select one of the following options for modeling the resistor temperature dependence:

- Device temperature - Use the device temperature, which is the Circuit temperature parameter value (from the SPICE Environment Parameters block, if one exists in the circuit, or the default value for this block otherwise) plus the Offset local circuit temperature, TOFFSET parameter value.
- Fixed temperature - Use a temperature that is independent of the circuit temperature to model temperature dependence.


## Offset local circuit temperature, TOFFSET

The amount by which the resistor temperature differs from the circuit temperature. This parameter is only visible when you select Device temperature for the Model temperature dependence using parameter. The default value is 0 K .

## Parameter extraction temperature, TMEAS

The temperature at which the resistor parameters were measured. The default value is 300.15 K . The value must be greater than 0 .

## Fixed circuit temperature, TFIXED

The temperature at which to simulate the resistor. This parameter is only visible when you select Fixed temperature for the Model temperature dependence using parameter. The default value is 300.15 K . The value must be greater than 0 .

## Ports The block has the following ports:

$+$
Positive electrical voltage.

## SPICE Resistor

## Negative electrical voltage.

See Also Diode

## SPST Switch

Purpose Model single-pole single-throw switch
Library
Passive Devices/Switches
Description The SPST Switch block models a single-pole single-throw switch:


- When the switch is closed, port c is connected to port s through a resistance with value equal to the Closed resistance parameter value.
- When the switch is open, port c is connected to port s through a resistance with value equal to the reciprocal of the Open conductance parameter value.

The switch is closed if the voltage presented at the vT control port exceeds the value of the Threshold parameter.

Optionally, you can add a delay between the point at which the voltage at vT passes the threshold and the switch opening or closing. To enable the delay, on the Dynamics tab, set the Model dynamics parameter to Model turn-on and turn-off times.

## SPST Switch

## Dialog Box and Parameters

- "Main Tab" on page 1-819
- "Dynamics Tab" on page 1-820

Main Tab

## Block Parameters: SPST Switch

## SPST Switch

The block represents a Single-Pole Single-Throw (SPST) switch controlled by an external control signal vT. It greater than the threshold, then the switch is closed, otherwise the switch is open.

## Parameters

Main Dynamics

Closed resistance:
Open conductance:

0.01
$1 \mathrm{e}-6$

Ohm
S
Threshold:
0

Closed resistance
Resistance between the cand s electrical ports when the switch is closed. The value must be greater than zero. The default value is $0.01 \Omega$.

## Open conductance

Conductance between the c and s electrical ports when the switch is open. The value must be greater than zero. The default value is $1 \mathrm{e}-6 \mathrm{~S}$.

## SPST Switch

## Threshold

The threshold voltage for the control physical signal input vT above which the switch will turn on. The default value is 0 V .

## Dynamics Tab

Block Parameters: SPST Switch

## SPST Switch

The block represents a Single-Pole Single-Throw (SPST) switch controlled by an external control signal vT. If vT greater than the threshold, then the switch is closed, otherwise the switch is open.

## Parameters

Main Dynamics
Model dynamics:
No dynamics

## Model dynamics

Select whether the block models a switching delay:

- No dynamics - Do not model the delay. This is the default option.
- Model turn-on and turn-off times - Use additional parameters to model a delay between the point at which the voltage at vT passes the threshold and the switch opening or closing.


## SPST Switch

## Turn-on delay

Time between the input voltage exceeding the threshold voltage and the switch closing. This parameter is only visible when you select Model turn-on and turn-off times for the Model dynamics parameter. The value must be greater than zero. The default value is $1 e-3$ seconds.

## Turn-off delay

Time between the input voltage falling below the threshold voltage and the switch opening. This parameter is only visible when you select Model turn-on and turn-off times for the Model dynamics parameter. The value must be greater than zero. The default value is $1 e-3$ seconds.

## Initial input value, vT

The value of the physical signal input vT at time zero. This value is used to initialize the delayed control voltage parameter internally. This parameter is only visible when you select Model turn-on and turn-off times for the Model dynamics parameter. The default value is 0 V .

Ports This block has the following ports:
vT
Physical signal that opens and closes the switch.
c, s
Electrical conserving ports.

See Also<br>DPDT Switch<br>DPST Switch<br>SPDT Switch<br>Simscape Switch

## Stepper Motor

Purpose
Library
Description


Model stepper motor
Rotational Actuators
The Stepper Motor block represents a stepper motor. It uses the input pulse trains, A and B, to control the mechanical output according to the following equations:

$$
\begin{aligned}
& e_{A}=-K_{m} \omega \sin \left(N_{r} \theta\right) \\
& e_{B}=K_{m} \omega \cos \left(N_{r} \theta\right) \\
& \frac{d i_{A}}{d t}=\left(v_{A}-R i_{A}-e_{A}\right) / L \\
& \frac{d i_{B}}{d t}=\left(v_{B}-R i_{B}-e_{B}\right) / L \\
& \frac{d \omega}{d t}=\left(-K_{m}\left(i_{A}-e_{A} / R_{m}\right) \sin \left(N_{r} \theta\right)+K_{m}\left(i_{B}-e_{B} / R_{m}\right) \cos \left(N_{r} \theta\right)-B \omega\right) / J \\
& \frac{d \theta}{d t}=\omega
\end{aligned}
$$

where:

- $e_{\mathrm{A}}$ and $e_{\mathrm{B}}$ are the back emfs induced in the A and B phase windings, respectively.
- $i_{\mathrm{A}}$ and $i_{\mathrm{B}}$ are the A and B phase winding currents.
- $v_{\mathrm{A}}$ and $v_{\mathrm{B}}$ are the A and B phase winding voltages.
- $K_{\mathrm{m}}$ is the motor torque constant.


## Stepper Motor

- $N_{\mathrm{r}}$ is the number of teeth on each of the two rotor poles. The Full step size parameter is $(\Pi / 2) / N_{\mathrm{r}}$.
- $R$ is the winding resistance.
- $L$ is the winding inductance.
- $R_{\mathrm{m}}$ is the magnetizing resistance.
- $B$ is the rotational damping.
- $J$ is the inertia.
- $\omega$ is the rotor speed.
- $\Theta$ is the rotor angle.

If the initial rotor is zero or some multiple of $(\Pi / 2) / N_{\mathrm{r}}$, the rotor is aligned with the phase winding of pulse A . This happens when there is a positive current flowing from the $\mathrm{A}+$ to the A - ports and there is no current flowing from the $\mathrm{B}+$ to the B - ports.

Use the Stepper Motor Driver block to create the pulse trains for the Stepper Motor block.

The Stepper Motor block produces a positive torque acting from the mechanical C to $R$ ports when the phase of pulse A leads the phase of pulse $B$.

## Thermal Ports

The block has three optional thermal ports, one for each of the two windings and one for the rotor. These ports are hidden by default. To expose the thermal ports, right-click the block in your model, and then from the context menu select Simscape block choices $>$ Show thermal port. This action displays the thermal ports on the block icon, and adds the Temperature Dependence and Thermal port tabs to the block dialog box. These tabs are described further on this reference page.
Use the thermal ports to simulate the effects of copper resistance and iron losses that convert electrical power to heat. For more information

## Stepper Motor

on using thermal ports in actuator blocks, see "Simulating Thermal Effects in Rotational and Translational Actuators".

## Basic <br> Assumptions and Limitations

The model is based on the following assumptions:

- This model neglects magnetic saturation effects, detent torque, and any magnetic coupling between phases.
- When you select the Start simulation from steady state check box in the Simscape Solver Configuration block, this block will not initialize an Initial rotor angle value between $-\Pi$ and $\pi$.

Dialog - "Electrical Torque Tab" on page 1-825
Box and Parameters

- "Mechanical Tab" on page 1-827
- "Temperature Dependence Tab" on page 1-828
- "Thermal Port Tab" on page 1-830


## Stepper Motor

## Electrical Torque Tab

## Block Parameters: Stepper Motor

## Stepper Motor

This block represents the electrical and torque characteristics of a permanent magnet stepper motor. The bli can be driven directly from the Stepper Motor Driver block, and produces a positive torque acting from the mechanical C to R ports when Phase A leads Phase B.

If the initial angle is set to zero or some multiple of (pi/2)/Nr where Nr is the number of teeth on each of the poles, then the rotor is aligned with the A-phase winding. This condition is held if there is a positive current flowing from the $\mathrm{A}+$ to A - terminals and no current flows from the $\mathrm{B}+$ to the B - terminals.

## Parameters

Electrical Torque	Mechanical	
Phase winding resistance:	0.55	Ohm
Phase winding inductance:	0.0015	H
Motor torque constant:	0.19	N *m/A
Magnetizing resistance:	Inf	Ohm
Full step size:	1.8	deg

## Phase winding resistance

Resistance of the A and B phase windings. The default value is $0.55 \Omega$.

## Stepper Motor

## Phase winding inductance

Inductance of the A and B phase windings. The default value is 0.0015 H .

## Motor torque constant

Motor torque constant $K_{m}$. The default value is $0.19 \mathrm{~N}^{*} \mathrm{~m} / \mathrm{A}$.

## Magnetizing resistance

The total magnetizing resistance seen from each of the phase windings. The value must be greater than zero. The default value is Inf, which implies that there are no iron losses.

## Full step size

Step size when changing the polarity of either the A or B phase current. The default value is $1.8^{\circ}$.

## Stepper Motor

## Mechanical Tab

## Block Parameters: Stepper Motor

## Stepper Motor

This block represents the electrical and torque characteristics of a permanent magnet stepper motor. The bl can be driven directly from the Stepper Motor Driver block, and produces a positive torque acting from the mechanical C to R ports when Phase A leads Phase B.

If the initial angle is set to zero or some multiple of (pi/2)/ Nr where Nr is the number of teeth on each of the poles, then the rotor is aligned with the A-phase winding. This condition is held if there is a positive current flowing from the $\mathrm{A}+$ to A - terminals and no current flows from the $\mathrm{B}+$ to the B - terminals.

## Parameters

Electrical Torque	Mechanical		
Rotor inertia:	$4.5 \mathrm{e}-5$	$\mathrm{~kg} * \mathrm{~m}^{\wedge} 2$	
Rotor damping:	$8 \mathrm{e}-4$	$\mathrm{~N} / \mathrm{m} /(\mathrm{rad} / \mathrm{s})$	
Initial rotor speed:	0	rpm	
Initial rotor angle:	0	deg	

$\square$

## Rotor inertia

Resistance of the rotor to change in motor motion. The default value is $4.5 \mathrm{e}-05 \mathrm{~kg}^{*} \mathrm{~m}^{2}$. The value can be zero.

## Stepper Motor

## Rotor damping

Energy dissipated by the rotor. The default value is $8 \mathrm{e}-04$ $\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

## Initial rotor speed

Speed of the rotor at the start of the simulation. The default value is 0 rpm .

## Initial rotor angle

Angle of the rotor at the start of the simulation. The default value is 0 rad .

## Temperature Dependence Tab

This tab appears only for blocks with exposed thermal ports. For more information, see "Thermal Ports" on page 1-823.

## Stepper Motor

## Block Parameters: Stepper Motor

## Stepper Motor

This block represents the electrical and torque characteristics of a permanent magnet stepper motor. The bli can be driven directly from the Stepper Motor Driver block, and produces a positive torque acting from the mechanical C to R ports when Phase A leads Phase B.

If the initial angle is set to zero or some multiple of ( $\mathrm{pi} / 2$ )/ Nr where Nr is the number of teeth on each of the poles, then the rotor is aligned with the A-phase winding. This condition is held if there is a positive current flowing from the $\mathrm{A}+$ to A - terminals and no current flows from the $\mathrm{B}+$ to the B - terminals.

## Parameters

| Electrical Torque | Mechanical | Temperature Dependence | Thermal Port |
| :--- | :--- | :--- | :--- | | Resistance temperature <br> coefficients, [alpha_A alpha_B]: | $[0.003930 .00393]$ | $1 / \mathrm{K}$ |
| :--- | :--- | :--- |
| Measurement temperature: | 25 | C |

## Resistance temperature coefficients, [alpha_A alpha_B]

A 1 by 2 row vector defining the coefficient $\alpha$ in the equation relating resistance to temperature, as described in "Thermal Model for Actuator Blocks". The first element corresponds to winding A, and the second to winding B. The default value is for copper, and is [ 0.003930 .00393 ] $1 / \mathrm{K}$.

## Stepper Motor

## Measurement temperature

The temperature for which motor parameters are defined. The default value is 25 C .

## Thermal Port Tab

This tab appears only for blocks with exposed thermal ports. For more information, see "Thermal Ports" on page 1-823.

## Stepper Motor

## Block Parameters: Stepper Motor

## Stepper Motor

This block represents the electrical and torque characteristics of a permanent magnet stepper motor. The bli be driven directly from the Stepper Motor Driver block, and produces a positive torque acting from the mech C to R ports when Phase A leads Phase B.

If the initial angle is set to zero or some multiple of (pi/2)/ Nr where Nr is the number of teeth on each of the poles, then the rotor is aligned with the A-phase winding. This condition is held if there is a positive current 1 from the $\mathrm{A}+$ to A - terminals and no current flows from the $\mathrm{B}+$ to the B - terminals.

Parameters

Electrical Torque $\quad$ Mechanical |  | Temperature Dependence | Thermal Port |
| :--- | :--- | :--- |

Winding thermal masses, [M_A M_B]:	[ 100100 ]	J/K
Winding initial temperatures, [T_A T_B]:	[ 25 25]	C
Rotor thermal mass:	50	J/K
Rotor initial temperature:	25	C

$$
\begin{aligned}
& \text { Percentage of magnetizing } \\
& \text { resistance associated with the }
\end{aligned}
$$ rotor:

## Stepper Motor

Winding thermal masses, [M_A M_B]
A 1 by 2 row vector defining the thermal mass for the A and B windings. The thermal mass is the energy required to raise the temperature by one degree. The default value is [ $\left.\begin{array}{ccc}100 & 100\end{array}\right] \mathrm{J} / \mathrm{K}$.

## Winding initial temperatures, [T_A T_B]

A 1 by 2 row vector defining the temperature of the A and B thermal ports at the start of simulation. The default value is [ 2525 ] C.

## Rotor thermal mass

The thermal mass of the rotor, that is, the energy required to raise the temperature of the rotor by one degree. The default value is $50 \mathrm{~J} / \mathrm{K}$.

## Rotor initial temperature

The temperature of the rotor at the start of simulation. The default value is 25 C .

Percentage of magnetizing resistance associated with the rotor
The percentage of the magnetizing resistance associated with the magnetic path through the rotor. It determines how much of the iron loss heating is attributed to the rotor thermal port HR, and how much is attributed to the two winding thermal ports HA and HB. The default value is $90 \%$.

Ports The block has the following ports:
A+
Top A-phase electrical connection.
A-
Lower A-phase electrical connection
B+
Top B-phase electrical connection.
B-
Lower B-phase electrical connection.
C
Mechanical rotational conserving port.
R
Mechanical rotational conserving port.
HA
Winding A thermal port. For more information, see "Thermal Ports" on page 1-823.
HB
Winding B thermal port. For more information, see "Thermal Ports" on page 1-823.
HR
Rotor thermal port. For more information, see "Thermal Ports" on page 1-823.

## Examples See the Controlled Stepper Motor example.

## References [1] M. Bodson, J. N. Chiasson, R. T. Novotnak and R. B. Rekowski. "High-Performance Nonlinear Feedback Control of a Permanent Magnet Stepper Motor." IEEE Transactions on Control Systems Technology, Vol. 1, No. 1, March 1993.

[2] P. P. Acarnley. Stepping Motors: A Guide to Modern Theory and Practice. New York: Peregrinus, 1982.
[3] S.E. Lyshevski. Electromechanical Systems, Electric Machines, and Applied Mechatronics. CRC, 1999.
See Also Stepper Motor Driver
Unipolar Stepper Motor

## Stepper Motor Driver

Purpose	Model stepper motor driver
Library	Drivers

Description The Stepper Motor Driver block represents a stepper motor driver. It creates the pulse trains, A and B, required to control the motor. This
 block initiates a step each time the voltage at the PWM port rises above the Enable threshold voltage.
If the voltage at the REV port is less than or equal to the Reverse threshold voltage, pulse A leads pulse B by 90 degrees. If the voltage at the REV port is greater than the Reverse threshold voltage, pulse $B$ leads pulse $A$ by 90 degrees and the motor direction is reversed.

At time zero, pulse $A$ is positive and pulse $B$ is negative.
Use the Controlled PWM Voltage block to create the voltage at the PWM port. This block creates a network engine event every time the PWM signal goes high. The network engine event triggers a simulation time point when the PWM signal goes high, which ensures good simulation accuracy. If you instead use the Controlled Voltage Source block from the Foundation library, you need to set a suitably small time step for the simulation. For information about specifying the Simulink step size, see "Choose a Solver" in the Simulink documentation.

## Stepper Motor Driver

## Dialog Box and Parameters



## Enable threshold voltage

When the voltage at the PWM port rises above this threshold, the Stepper Motor Driver block initiates a step. The default value is 2.5 V .

## Reverse threshold voltage

When the voltage at the REV port rises above this threshold, pulse B leads pulse A by 90 degrees and the motor direction is reversed. The default value is 2.5 V .

## Output voltage amplitude

Amplitude of the output pulse trains. The default value is 10 V .

## Ports

The block has the following ports:

A+
Positive electrical output of pulse A.

## Stepper Motor Driver

A-Negative electrical output of pulse A
B+Positive electrical output of pulse B.B-Negative electrical output of pulse B.
PWMTriggering input step voltage.
REFInput floating reference voltage.REVInput voltage that controls motor direction.
Examples See the Controlled Stepper Motor example.
See Also Controlled PWM Voltage and Stepper Motor.

## Strain Gauge

## Purpose

Model deformation sensor

## Library

Sensors


The Strain Gauge block represents a sensor that generates a change in resistance as a function of strain using the following equation:
$\frac{\Delta R}{R}=K \varepsilon$
where:

- $\Delta R / R$ is the fractional change in resistance.
- $\varepsilon$ is the strain at port B.
- $K$ is the Gauge factor parameter value.


## Dialog Box and Parameters

## Gauge resistance

The unstressed gauge resistance. The default value is $100 \Omega$.

## Strain Gauge

## Gauge factor

The ratio $K$ of the fractional change in resistance to the fractional change in length. The default value is 2 .

## Ports The block has the following ports:

B
Strain input.
$+$
Positive electrical port.

Negative electrical port.

## Purpose

Model resistor with thermal port

## Library

Description


Passive Devices $T$ is

The Thermal Resistor block represents a temperature-dependent resistor. The resistance when the temperature at the thermal port is

$$
R=R_{0}\left(1+\alpha\left(T-T_{0}\right)\right)
$$

where:

- $R_{0}$ is the nominal resistance at the reference temperature $T_{0}$.
- $a$ is the temperature coefficient.

The following equation describes the thermal behavior of the block:

$$
Q=K_{d} t_{c} \frac{d T}{d t}-i^{2} R
$$

where:

- $Q$ is the net heat flow into port A.
- $K_{d}$ is the Dissipation factor parameter value.
- $t_{c}$ is the Thermal time constant parameter value.
- $d T / d t$ is the rate of change of the temperature.
- $i$ is the current through the resistor.


## Dialog <br> Box and Parameters

## Electrical Tab



## Nominal resistance

The nominal resistance of the thermistor at the reference temperature. Many datasheets quote the nominal resistance at $25^{\circ} \mathrm{C}(298.15 \mathrm{~K})$ and list it as R 25 . The default value is $1 \Omega$.

## Reference temperature

The temperature at which the nominal resistance was measured. The default value is 298.15 K .

## Temperature coefficient

The coefficient $\alpha$ in the equation that describes resistance as a function of temperature. The default value is $5 \mathrm{e}-051 / \mathrm{K}$.

## Thermal Tab



## Thermal time constant

The time it takes the resistor temperature to reach $63 \%$ of the final temperature change when a step change in ambient temperature occurs. The default value is 10 s .

## Dissipation factor

The thermal power required to raise the thermal resistor temperature by one K. The default value is $0.001 \mathrm{~W} / \mathrm{K}$.

## Initial temperature

The temperature of the thermal resistor at the start of the simulation. The default value is 298.15 K .

## Ports <br> The block has the following ports:

A
Resistor thermal port

## Thermal Resistor

$+$
Positive electrical port

Negative electrical port
See Also Thermistor, Thermocouple.

## Purpose

Model NTC thermistor using B-parameter equation

## Library

Sensors
Description


The Thermistor block represents an NTC thermistor using the B-parameter equation. The resistance at temperature $T$ is

$$
R=R_{0}\left(e^{B\left(1 / T-1 / T_{0}\right)}-1\right)
$$

where:

- $R_{0}$ is the nominal resistance at the reference temperature $T_{0}$.
- $B$ is the characteristic temperature constant.

The following equation describes the thermal behavior of the block:

$$
Q=K_{d} t_{c} \frac{d T}{d t}
$$

where:

- $Q$ is the net heat flow into port A.
- $K_{d}$ is the Dissipation factor parameter value.
- $t_{c}$ is the Thermal time constant parameter value.
- $d T / d t$ is the rate of change of the temperature.

To model the thermistor in free space:
1 Connect the thermistor to the B port of a Simscape Convective Heat Transfer block.

2 Connect the A port of the Convective Heat Transfer block to a Simscape Ideal Temperature Source block whose temperature is set to the ambient temperature.

3 Set the Area parameter of the Convective Heat Transfer block to an approximate area $A_{n o m}$.

4 Set the Heat transfer coefficient parameter of the Convective Heat Transfer block to $K_{d} / A_{\text {nom }}$.

# Thermistor 

## Dialog Electrical Tab <br> Box and <br> Parameters

## Block Parameters: Thermistor

## Thermistor

This block represents an NTC thermistor using the B-parameter equation. The resistance at temperature T i: given by $R(T)=R 0^{*} \exp \left(B^{*}(1 / T-1 / T 0)\right)$ where $R 0$ is the Nominal resistance at the reference temperature T0 $B$ is the Characteristic temperature constant. The temperature $T$ of the thermistor is governed by the equatic $\mathrm{m}^{*} \mathrm{c}^{*} \mathrm{dT} / \mathrm{dt}=\mathrm{Q}$ where Q is the net heat flow into port $\mathrm{A}, \mathrm{m}$ is the mass and c is the lumped specific heat ca The thermal mass $\mathrm{m}^{*} \mathrm{c}$ is calculated from the Thermal time constant t c and the Dissipation factor $\mathrm{K} \_\mathrm{d}$ using equation $\mathrm{m}^{*} \mathrm{c}=\mathrm{K} \_\mathrm{d}^{*} \mathrm{t}$ _c.

## Parameters

Electrical Thermal

| Nominal resistance R0 at <br> reference temperature T0: <br> Characteristic temperature <br> constant $\mathrm{B}:$ | 1000 | Ohm |
| :--- | :--- | ---: | :--- |
| Reference temperature T0: | 3500 | K |

ок
Cancel
Help

Nominal resistance $R 0$ at reference temperature T0
The nominal resistance of the thermistor at the reference temperature. Many datasheets quote the nominal resistance at $25^{\circ} \mathrm{C}$ and list it as R25. The default value is $1000 \Omega$.

## Thermistor

## Characteristic temperature constant $B$

The coefficient $B$ in the equation that describes resistance as a function of temperature. The default value is 3500 K .

## Reference temperature T0

The temperature at which the nominal resistance was measured. The default value is 298.15 K .

## Thermal Tab

Block Parameters: Thermistor

## Thermistor

This block represents an NTC thermistor using the B-parameter equation. The resistance at temperature T is given by $R(T)=R 0 * \exp \left(B^{*}(1 / T-1 / T 0)\right)$ where $R 0$ is the Nominal resistance at the reference temperature $T 0$, an B is the Characteristic temperature constant. The temperature T of the thermistor is governed by the equation $\mathrm{m}^{*} \mathrm{c}^{*} \mathrm{dT} / \mathrm{dt}=\mathrm{Q}$ where Q is the net heat flow into port $\mathrm{A}, \mathrm{m}$ is the mass and c is the lumped specific heat capacit The thermal mass $\mathrm{m}^{*} \mathrm{c}$ is calculated from the Thermal time constant t_c and the Dissipation factor K_d using the equation $\mathrm{m}^{*} \mathrm{c}=\mathrm{K} \_\mathrm{d}^{*} \mathrm{t}$ _c.

Parameters

Electrical	Thermal	
Thermal time constant:	5.0	S
Dissipation factor:	$0.75 \mathrm{e}-3$	$\mathrm{~W} / \mathrm{K}$
Initial temperature:	298.15	K

## Thermal time constant

The time it takes the sensor temperature to reach $63 \%$ of the final temperature change when a step change in ambient temperature occurs. The default value is 5 s .

## Dissipation factor

The thermal power required to raise the thermistor temperature by one K . The default value is $0.75 \mathrm{e}-4 \mathrm{~W} / \mathrm{K}$.

## Initial temperature

The temperature of the thermistor at the start of the simulation. The default value is 298.15 K .

## Ports <br> The block has the following ports:

A
Thermal port.
$+$
Positive electrical port.

Negative electrical port.
See Also PTC Thermistor
Thermal Resistor

## Thermocouple

## Purpose

## Library

Description


Model sensor that converts thermal potential difference into electrical potential difference

## Sensors

The Thermocouple block represents a thermocouple using the standard polynomial parameterization defined in the NIST ITS-90 Thermocouple Database [1]. The voltage $E$ across the device in mV is

$$
E(m V)=c 0+c 1^{*} t+\ldots+c n^{*} t^{n}
$$

where:

- $c i$ is the $i^{\text {th }}$ element of the Coefficients [c0 c1 ... cn] parameter value.
- $t$ is the temperature difference in degrees Celsius between the temperature at the thermal port A and the Reference temperature parameter value.

Note The equation for voltage across the device as a function of temperature difference is defined in mV . The units of the voltage across the actual device is V .

The following equation describes the thermal behavior of the block:

$$
Q=K_{d} t_{c} \frac{d T}{d t}
$$

where:

- $T$ is the temperature at port A.
- $Q$ is the net heat flow into port A.
- $K_{d}$ is the Dissipation factor parameter value.
- $t_{c}$ is the Thermal time constant parameter value.
- $d T / d t$ is the rate of change of the temperature.

To model the thermocouple in free space:
1 Connect the thermocouple to the B port of a Simscape Convective Heat Transfer block.

2 Connect the A port of the Convective Heat Transfer block to a Simscape Ideal Temperature Source block whose temperature is set to the ambient temperature.

3 Set the Area parameter of the Convective Heat Transfer block to an approximate area $A_{n o m}$.

4 Set the Heat transfer coefficient parameter of the Convective Heat Transfer block to $K_{d} / A_{\text {nom }}$.

## Basic Assumptions and Limitations

The model is based on the following assumptions:

- The high-order polynomials this block uses are very sensitive to the number of significant figures used for computation. Use all available significant figures when specifying the Coefficients [c0 c1 ... cn] parameter.
- Coefficients [c0 c1 ... cn] are defined for use over a specified temperature range.
- This block does not include the additional exponential term that Type K thermocouples use when parameterized for $t>0$.


## Dialog <br> Box and Parameters

## Electrical Tab



## Coefficients [c0 c1 cn]

The vector of coefficients $c$ in the equation that describes voltage as a function of temperature. The default value is [ 00.0054031 1.2593e-05-2.3248e-08 3.2203e-11 -3.315e-14 2.5574e-17 $-1.2507 e-202.7144 e-24$ ]. This value specifies a Type $S$ thermocouple, which is valid in the range -50 to 1064 degrees C.

Note You can download parameters for other standard thermocouple types from the NIST database [1]. For information on how to do this, see the Simulink Approximating Nonlinear Relationships: Type S Thermocouple example.

## Thermal Tab



## Reference temperature

The temperature the block subtracts from the temperature at the thermal port in calculating the voltage across the device. The default value is $0^{\circ} \mathrm{C}$.

## Thermal time constant

The time it takes the thermocouple temperature to reach $63 \%$ of the final temperature change when a step change in ambient temperature occurs. The default value is 1 s .

## Dissipation factor

The thermal power required to raise the thermocouple temperature by one K . The default value is $0.001 \mathrm{~W} / \mathrm{K}$.

## Initial temperature

The temperature of the thermocouple at the start of the simulation. The default value is $25^{\circ} \mathrm{C}$.

Ports	The block has the following ports:   A   +$\quad$ Thermocouple thermal port.
Pesitive electrical port.	

## Three-Winding Mutual Inductor

## Purpose

Model three coupled inductors

## Library

Description


Passive Devices

The Three-Winding Mutual Inductor block represents a set of three coupled inductors or windings. The voltage across the three windings is

$$
\begin{aligned}
& V_{1}=L_{1} \frac{d I_{1}}{d t}+M_{12} \frac{d I_{2}}{d t}+M_{13} \frac{d I_{3}}{d t} \\
& V_{2}=M_{12} \frac{d I_{1}}{d t}+L_{2} \frac{d I_{2}}{d t}+M_{23} \frac{d I_{3}}{d t} \\
& V_{3}=M_{13} \frac{d I_{1}}{d t}+M_{23} \frac{d I_{2}}{d t}+L_{3} \frac{d I_{3}}{d t}
\end{aligned}
$$

where:

- $V_{i}$ is voltage across the $i$ th winding.
- $I_{i}$ is current through the $i$ th winding.
- $L_{i}$ is self inductance of the $i$ th winding.
- $M_{i j}$ is mutual inductance of the $i$ th and $j$ th windings, $M_{i j}=K_{i j} \sqrt{L_{i} L_{j}}$.

In the preceding equations, currents are positive when flowing into the positive node of their respective inductor terminals.

When you run a simulation that includes this block, the software checks the specified parameter values to ensure that the resulting device is passive. If it is not, the software issues an error.

## Three-Winding Mutual Inductor

## Dialog <br> Box and Parameters

Block Parameters: Three-Winding Mutual Inductor
Three-Winding Mutual Inductor
This block models three coupled inductors. The following equations decsribe the voltage-current relationships, where currents are positive when flowing into the positive node of their respective inductor terminals.
$\mathrm{V} 1=\mathrm{L} 1^{*} \mathrm{~d} 11 / \mathrm{dt}+\mathrm{M} 12^{*} \mathrm{dI} 2 / \mathrm{dt}+\mathrm{M} 13^{*} \mathrm{dI} 3 / \mathrm{dt}$
$\mathrm{V} 2=\mathrm{M} 12^{*} \mathrm{dI} 1 / \mathrm{dt}+\mathrm{L} 2^{*} \mathrm{~d} \mathrm{I} 2 / \mathrm{dt}+\mathrm{M} 23^{*} \mathrm{dI} 3 / \mathrm{dt}$
$\mathrm{V} 3=\mathrm{M} 13^{*} \mathrm{dI} 1 / \mathrm{dt}+\mathrm{M} 23^{*} \mathrm{dI} 2 / \mathrm{dt}+\mathrm{L} 3^{*} \mathrm{dI} 3 / \mathrm{dt}$
where parameters L1, L2 and L3 are the winding self-inductances, and the Mi, js are the mutual inductances. Mi, j is defined in terms of the Coefficient of Coupling $\mathrm{Ki}, \mathrm{j}$ using the equation Mi,j=Ki,j*sqrt(Li*L $\mathbf{j})$. The absolute value of $|\mathrm{K}|$ must be less than one and the eignevalues of above system of equations must be greater than zero.

The parameters IC1, IC2 and IC3 set the initial currents flowing through windings 1,2 and 3.


Help Apply

## Inductance L1

The self inductance of the first winding. The default value is 0.001 H .

## Three-Winding Mutual Inductor

## Inductance L2

The self inductance of the second winding. The default value is 0.001 H .

## Inductance L3

The self inductance of the third winding. The default value is 0.001 H .

## Coefficient of coupling, K12

The coefficient that defines the mutual inductance between the first and second windings. The default value is 0.9. The absolute value must be between 0 and 1 , exclusive.

## Coefficient of coupling, K13

The coefficient that defines the mutual inductance between the first and third windings. The default value is 0.9 . The absolute value must be between 0 and 1, exclusive.

## Coefficient of coupling, K23

The coefficient that defines the mutual inductance between the second and third windings. The default value is 0.9 . The absolute value must be between 0 and 1 , exclusive.

## Specify initial condition

Select one of the following options for specifying an initial condition:

- No - Do not specify an initial condition for the model. This is the default option.
- Yes - Specify the initial inductor currents.

Initial current port 1, IC1
The current flowing through the first winding at the start of the simulation. This parameter is only visible when you select Yes for the Specify initial condition parameter. The default value is 0 A .

## Initial current port 2, IC2

The current flowing through the second winding at the start of the simulation. This parameter is only visible when you select

Yes for the Specify initial condition parameter. The default value is 0 A .

## Initial current port 3, IC3

The current flowing through the third winding at the start of the simulation. This parameter is only visible when you select Yes for the Specify initial condition parameter. The default value is 0 A .

## Ports

The block has the following ports:
1+
Positive electrical voltage of the first mutual inductor.
1 -
Negative electrical voltage of the first mutual inductor.
2+
Positive electrical voltage of the second mutual inductor.
2-
Negative electrical voltage of the second mutual inductor.
3+
Positive electrical voltage of the third mutual inductor.
3 -
Negative electrical voltage of the third mutual inductor.

Purpose	Model thyristor using NPN and PNP transistors
Library	Semiconductor Devices

Description


The Thyristor block represents a system-level thyristor model that can be parameterized from a typical datasheet. The thyristor model is built from a pair of NPN and PNP bipolar transistors, as shown in the following illustration.


The P-N-P-N structure of a thyristor is matched by the P-N-P and N-P-N structures of the bipolar transistors, the base of each device being connected to the collector of the other device. Ensuring that this circuit behaves like a thyristor is primarily picking suitable parameter values of the NPN and PNP devices, plus external resistors. For example, for the circuit to latch into the on-state, once triggered by a suitable gate current, the total gain of the two transistors must be greater than one. This model structure replicates the behavior of a thyristor in typical application circuits, while at the same time presenting a minimum number of equations to the solver, to improve simulation speed.

The model captures the following thyristor behaviors:

- Off-state currents, $I_{D R M}$ and $I_{R R M}$. These are typically quoted for the maximum off-state voltages $V_{D R M}$ and $V_{R R M}$. It is assumed, as is the case for most thyristors, that $I_{D R M}=I_{R R M}$ and $V_{D R M}=V_{R R M}$.
- The gate trigger voltage is equal to the Gate trigger voltage, v_GT parameter value when the gate current is equal to the Gate trigger current, i_GT parameter value.
- The thyristor latches on when the gate current is equal to the Gate trigger current, i_GT. The thyristor does not latch on until the gate current reaches this value. To ensure this is the case, you must set the Internal shunt resistor, Rs parameter correctly. If the resistance is too high, then the gate triggers before the gate current reaches $i_{G T}$. If the resistance is too small, then the gate does not trigger.

You can determine the value of the internal shunt resistor Rs by running the simulation. To see how this can be done, refer to the Thyristor Static Behavior Validation example. Alternatively, if you are using the thyristor in a circuit where there is an external resistor $\mathrm{R}_{\mathrm{GK}}$ connected from gate to cathode, then the effect of Rs is usually very small, and it can be set to inf.

- With the thyristor in the on-state, if the gate current is removed, the thyristor stays in the on-state, provided that the load current is higher than the latching current. You do not specify the latching
current directly because its value is primarily determined by other block parameters.
However, the latching current can be influenced by the Product of NPN and PNP forward current gains parameter on the Advanced tab. Reducing the gain increases the latching current.
- The on-state voltage is equal to the $\mathbf{O n}$-state voltage, V_T parameter value when the load current is equal to the On-state current, I_T parameter value. This is ensured by the R_on resistance value, which takes into account the voltage drop seen across the PNP and NPN devices.
- Triggering by rate of rise of off-state voltage. A rapid change in anode-cathode voltage induces a current in the base-collector capacitance terms. If this current is large enough, it triggers the thyristor into the on-state. The thyristor initialization routine calculates a suitable value for the base-collector capacitance, so that when the rate of change of voltage is equal to the Critical rate of rise of off-state voltage, $\mathbf{d V} / \mathbf{d t}$ parameter value, the thyristor triggers on. This calculation is based on the approximation that the required current is $v_{G T} / R_{G K}$ where $R_{G K}$ is the gate-cathode resistance value used when quoting the critical $d V / d t$ value.
- A nonzero gate-controlled turn-on time. This is primarily influenced by the NPN transistor forward transit time, TF. You either specify this parameter directly, or calculate an approximate value for TF from the turn-on time.
- A nonzero commuted turn-off time. This is primarily influenced by the PNP transistor forward transit time, TF. You can either specify this parameter directly, or set it to be equal to the forward transit time for the NPN transistor.

Resistors Gmin1 and Gmin2 improve numerical robustness at large forward and reverse voltages. Their values influence the off-state currents by no more than $1 \%$ at the maximum off-state forward and reverse voltages.

## Thermal Port

The block has an optional thermal port, hidden by default. To expose the thermal port, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal port H on the block icon, and adds the Thermal port tab to the block dialog box.

Use the thermal port to simulate the effects of generated heat and device temperature. For more information on using thermal ports and on the Thermal port tab parameters, see "Simulating Thermal Effects in Semiconductors".

## Basic <br> Assumptions and Limitations

The Thyristor block has the following limitations:

- This block does not model temperature-dependent effects. SimElectronics simulates the block at the temperature at which the component behavior was measured, as specified by the Measurement temperature parameter value. All parameters must be quoted for this temperature.
- In sensitive gate circuits (that is, where there is no external gate-cathode resistor $\mathrm{R}_{\mathrm{GK}}$ ), you must set the value of the Internal shunt resistor, Rs parameter to ensure correct triggering. If the internal shunt resistance is too high, then the thyristor triggers for currents less than $i_{G T}$. If the internal shunt resistance is too low, the thyristor does not trigger for an input current of $i_{G T}$. For details on using simulation to determine the acceptable internal shunt resistance value, see the Thyristor Static Behavior Validation example.
- Triggering by exceeding the break-over voltage is not modeled.
- Numerically the thyristor can be demanding to simulate, given the very small gate currents in comparison to the load current, and also the very steep current gradients during switching. However, for most typical thyristor-based circuits, you can use the default simulation parameters. In some cases you may need to tighten the Absolute Tolerance and Relative Tolerance parameters on the Solver tab
of the Configuration Parameters dialog box, to ensure convergence. In such cases, changing the default value of Absolute Tolerance from auto to $1 e-4$ or $1 e-5$ is usually sufficient, because it prevents adaptive changing of this parameter during simulation.


## Dialog Box and Parameters

## Main Tab



## On-state voltage, V_T

The anode-cathode static voltage drop when in the on-state, and the current flowing is equal to the on-state current $I_{T}$. The default value is 1.2 V .

## On-state current, I_T

Static load (or equivalently anode) current that flows when the anode-cathode voltage is equal to the on-state voltage $V_{T}$. The default value is 1 A .

## Off-state current, I_DRM

The off-state anode current $I_{D R M}$ that flows when the anode-cathode voltage is equal to the off-state voltage $V_{D R M}$. The default value is 0.01 mA .

## Corresponding off-state voltage, V_DRM

Corresponding off-state voltage, $V_{D R M}$. The anode-cathode voltage $V_{D R M}$ applied with the thyristor in the off-state when quoting the off-state current $I_{D R M}$. The default value is 400 V .

## Measurement temperature

The device simulation temperature. You must specify all block parameter values for this temperature. The default value is $25^{\circ} \mathrm{C}$.

## Gate Triggering Tab



## Gate trigger current, I_GT

Critical gate current $i_{G T}$ required to turn the transistor on, resulting in a gate voltage equal to the gate trigger voltage $v_{G T}$.

You must set the value of the Internal shunt resistor, Rs parameter on the Advanced tab to ensure that the gate triggers at $i_{G T}$, and not for currents less that $i_{G T}$. The default value is $3 \mu \mathrm{~A}$.

## Corresponding gate voltage, V_GT

Gate-cathode voltage $v_{G T}$ when the gate current is equal to the gate trigger current $i_{G T}$. The default value is 0.6 V .

## Test voltage, V_D

Supply voltage used when quoting values for $v_{G T}$ and $i_{G T}$. The default value is 12 V .

## Test load resistor

Load resistor used when quoting values for $v_{G T}$ and $i_{G T}$. The default value is $120 \Omega$.

## dV/dt Triggering Tab



Critical rate of rise of off-state voltage, $\mathrm{dV} / \mathrm{dt}$
Rate at which the off-state anode-cathode voltage must be increased for the thyristor to turn on. The default value is 150 V/us.

## Test gate-cathode resistor, R_GK

Gate-cathode resistor used when quoting the critical rate of rise off off-state voltage. The default value is $1 \mathrm{~K} \Omega$.

## Time Constants Tab

园 Block Parameters: Thyristor						
Thyristor   This block represents a thyristor modeled using an NPN and a PNP transistor. The collector of each device is connected to the base of the other device so as to give the P-N-P-N junction structure of a thyristor. For more details of the model structure, consult the documentation. The device model can be turned on using both gate and $\mathrm{dV} / \mathrm{dt}$ triggering. Triggering via exceeding of the break-over voltage is not modeled.						
Parameters						
Main	Gate Triggering		Time Constants	Advanced		
NPN device forward transit time parameterization:   Gate-controlled turn-on time:   Corresponding gate current:   PNP device forward transit time parameterization:			Derive approximate value from gate-controlled turn-on time			
			2		us	$\checkmark$
			10		mA	$\checkmark$
			Set equal to NPN device forward transit time			
OK Cancel $\square$ Help Apply						

NPN device forward transit time parameterization
Select one of the following options:

- Derive approximate value from gate-controlled turn-on time - The block calculates the NPN device forward transit time based on the values for the gate-controlled turn-on time and corresponding gate current that you specify.
- Specify directly - Provide the value directly by using the NPN device forward transit time parameter.


## Gate-controlled turn-on time

Time for the gate to turn from the off to the on state when a gate current is applied. This parameter is visible only when you select Derive approximate value from gate-controlled turn-on time for NPN device forward transit time parameterization. The default value is $2 \mu \mathrm{~s}$.

## Corresponding gate current

The gate current used when quoting the gate-controlled turn-on time. The gate current and turn-on time are used to calculate an approximate value for the NPN transistor forward transit time on the assumption that all of the input charge is used to raise the gate voltage to the gate trigger voltage $v_{G T}$. This parameter is visible only when you select Derive approximate value from gate-controlled turn-on time for NPN device forward transit time parameterization. The default value is 10 mA .

## NPN device forward transit time

Represents the mean time for the minority carriers to cross the base region from the emitter to the collector of the NPN device [1]. This parameter is visible only when you select Specify directly for NPN device forward transit time parameterization. The default value is $0.3 \mu \mathrm{~s}$.

PNP device forward transit time parameterization
Select one of the following options:

- Set equal to NPN device forward transit time - The block uses the NPN device forward transit time value.
- Specify directly - Provide the value directly by using the PNP device forward transit time parameter.


## PNP device forward transit time

Represents the mean time for the minority carriers to cross the base region from the emitter to the collector of the PNP device [1]. This parameter is visible only when you select Specify directly
for PNP device forward transit time parameterization. The default value is $0.3 \mu \mathrm{~s}$.

## Advanced Tab



## Internal shunt resistor, Rs

Represents the gate-cathode shunt resistance. It is important to set this parameter value to ensure that the gate triggers at $i_{G T}$, and not for currents less that $i_{G T}$. For details, see the Thyristor Static Behavior Validation example. If you are using the thyristor in a circuit where there is an external gate-cathode resistor $\mathrm{R}_{\mathrm{GK}}$, then usually the effect of Rs is small, and it can be set to inf. The default value is $87 \mathrm{k} \Omega$.

## Internal series gate resistor, $\mathbf{R g}$

Represents the resistance associated with the gate connection. A typical value is of the order of a few ohms, and its impact on static and dynamic characteristics is small. Therefore, its precise value is not important, but its presence helps avoid numerical
simulation issues if the gate is driven directly by a voltage source. You can specify any positive value. The default value is $10 \Omega$.

## Product of NPN and PNP forward current gains

This is the product of the NPN forward gain $B F_{N P N}$ and the PNP forward gain $B F_{P N P}$. The value must be greater than one for latching to occur. The smaller the value, the larger the latching current becomes. However, latching current is primarily set by other block parameters, and the total gain has only a small effect. The default value is 10 .

## Ports The block has the following ports:

G
Electrical conserving port associated with the gate.
A
Electrical conserving port associated with the anode.
K
Electrical conserving port associated with the cathode.
Examples See the Thyristor Static Behavior Validation and Thyristor Dynamic Behavior Validation examples.

## References

[1] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. 2nd Edition, McGraw-Hill, 1993.

See Also NPN Bipolar Transistor, PNP Bipolar Transistor

## Purpose

Model timer integrated circuit behaviorally

## Library

Description


Integrated Circuits
The Timer block is a behavioral model of a timer integrated circuit such as the NE555.

The following figure shows the implementation structure.


The Potential divider component resistance parameter sets the values of the three resistors creating the potential divider. The two comparator inputs have infinite input resistance and zero input capacitance. The S-R Latch block provides the functionality of the set-reset latch. It includes an output capacitor and a resistor with values set to match the Propagation delay parameter value. The block models the output stage inverter using a SimElectronics CMOS NOT block. You define the output resistance, low-level output voltage, and high-level output voltage for the CMOS gate in the Timer block dialog box. The discharge switch approximates the NPN bipolar transistor on a real timer as a switch with defined switch on-resistance and off-resistance values.

## Basic Assumptions and Limitations

This block has the following limitations:

- The behavior is abstracted. Results are not as accurate as a transistor-level model.
- Delay in response to changing inputs depends solely upon the RC time constant of the resistor-capacitor network at the output of the latch. In practice, the delay has a more complex dependency on the device structure. Set this value based on the output-pulse rise and fall times.
- The drop in output voltage is a linear function of output current. In practice, the relationship is that of a bipolar transistor push-pull pair.
- The controlled switch arrangement used by the block is an approximation of an open-collector arrangement.
- The power supply connects internally within the component, and the block assumes that the GND pin is grounded.


## Dialog Box and Parameters

## Supply Tab



## Power supply voltage

The voltage value $V_{c c}$ that the block applies internally to the timer component. The default value is 15 V .

## Outputs Tab



## Low level output voltage

The output voltage when the timer output is low and no output current is drawn. The default value is 0 V .

## High level output voltage

The output voltage $V_{O H}$ when the timer output is high and no current is drawn. The default value is 14.1 V .

## Output resistance

The ratio of output voltage drop to output current. Set this parameter to $\left(V_{O H}-V_{O H 1}\right) / I_{O H 1}$, where $V_{O H 1}$ is the reduced output high voltage when the output current is $I_{O H 1}$. The default value is $8 \Omega$.

## Propagation delay

Set this value to the input-pulse or output-pulse rise time. The default value is $1 \mathrm{e}-07 \mathrm{~s}$.

## Discharge Tab



## Discharge switch on-resistance

A representative value is the discharge pin saturation voltage divided by the corresponding current. The default value is $12 \Omega$.

## Discharge switch off-resistance

A representative value is the discharge pin leakage current divided by the corresponding pin voltage. The default value is $5 \mathrm{e}+08 \Omega$.

## Potential Divider Tab



## Potential divider component resistance

A typical value for a 555 -type timer is $5 \mathrm{k} \Omega$. You can measure it directly across the positive supply and control pins when the chip does not connect to a circuit. The default value is $5 \mathrm{k} \Omega$.

## Ports

This block has the following ports:
THRES
Electrical port corresponding to the threshold pin.
TRIG
Electrical port corresponding to the trigger pin.
CONT
Electrical port corresponding to the control pin.

## RESET

Electrical port corresponding to the reset pin.
OUT
Electrical port corresponding to the output pin.

## DISCH

Electrical port corresponding to the discharge pin.

## See Also <br> S-R Latch and Comparator.

## Transmission Line

## Purpose <br> Library <br> Description <br> 

Model delay-based or lumped parameter transmission line

Passive Devices

The Transmission Line block lets you choose between the following models of a transmission line:

1 Delay-based and lossless
2 Delay-based and lossy
3 Lumped parameter L-section
4 Lumped parameter pi-section
The first option provides the best simulation performance, with options 2,3 and 4 requiring progressively more computing power.

## Delay-Based and Lossless

This first option, Delay-based and lossless, models the transmission line as a fixed impedance, irrespective of frequency, plus a delay term. The defining equations are:

$$
\begin{aligned}
& v_{1}(t)-i_{1}(t) Z_{0}=v_{2}(t-\tau)+i_{2}(t-\tau) Z_{0} \\
& v_{2}(t)-i_{2}(t) Z_{0}=v_{1}(t-\tau)+i_{1}(t-\tau) Z_{0}
\end{aligned}
$$

where:

- $v_{1}$ is the voltage across the left-hand end of the transmission line.
- $i_{1}$ is the current into the left-hand end of the transmission line.
- $v_{2}$ is the voltage across the right-hand end of the transmission line.
- $i_{2}$ is the current into the right-hand end of the transmission line.
- $\tau$ is the transmission line delay.
- $Z_{0}$ is the line characteristic impedance.


## Transmission Line

## Delay-Based and Lossy

To introduce losses, the second option, Delay-based and lossy, connects $N$ delay-based components, each defined by the above equations, in series via a set of resistors, as shown in the following illustration.

$N$ is an integer greater than or equal to 1. $r=R \cdot L E N / N$, where $R$ is the line resistance per unit length and $L E N$ is the line length.

## Lumped Parameter L-Section

The following block diagram shows the model of one L-line segment.


The lumped parameter parameterization uses $N$ copies of the above segment model connected in series.

Parameters are as follows:

## Transmission Line

- $R$ is line resistance per unit length.
- $L$ is the line inductance per unit length.
- $C$ is the line capacitance per unit length.
- $G$ is the line conductance per unit length.
- LEN is the length of the line.
- $N$ is the number of series segments.


## Lumped Parameter Pi-Section

The following block diagram shows the model of one pi-line segment.


The lumped parameter parameterization uses $N$ copies of the above segment model connected in series. The parameters are as defined for the L-section transmission line model. Unlike the L-section model, the pi-section model is symmetric.

## Lumped Parameter Line Model Parameterization

The lumped-parameter models (L-section or pi-section) are the most challenging to simulate, typically needing many more segments (greater N ) than for the delay-based and lossy model [1].

## Transmission Line

Cable manufacturers do not typically quote an inductance value per unit length, but instead give the characteristic impedance. The inductance, capacitance, and characteristic impedance are related by:

$$
L=C \cdot Z_{0}{ }^{2}
$$

The block lets you specify either $L$ or $Z_{0}$ when using the lumped parameter model.

## Basic Assumptions and Limitations

The Transmission Line model has the following limitations:

- For the lumped parameter options, MathWorks recommends that you use a trapezoidal solver such as ode23t. This is because lumped parameter transmission models have very lightly damped internal dynamics, which are best suited to trapezoidal solvers for numerical accuracy.
- The lumped parameter pi-section model has a parallel capacitor at both ends. This means that you should not connect it directly to an ideal voltage source, that is, a source with no internal resistance. The lumped parameter L-section model, however, has a series input resistor, and therefore you can connect it directly to an ideal voltage source.


## Dialog Box and Parameters

## Transmission Line

## Model type

Select one of the following transmission line models:

- Delay-based and lossless - Model the transmission line as a fixed impedance, irrespective of frequency, plus a delay term, as described in "Delay-Based and Lossless" on page 1-875. This is the default method. It provides the best simulation performance.
- Delay-based and lossy - Model the transmission line as a number of delay-based components, connected in series via a set of resistors, as described in "Delay-Based and Lossy" on page 1-876.
- Lumped parameter L-section - Model the transmission line as a number of L-line segments, connected in series, as described in "Lumped Parameter L-Section" on page 1-876.
- Lumped parameter pi-section - Model the transmission line as a number of pi-line segments, connected in series, as described in "Lumped Parameter Pi-Section" on page 1-877.


## Transmission delay

The total transmission line delay. This parameter appears for delay-based models only. The parameter value must be greater than zero. The default value is 5 ns , which is a typical value for a one-meter coaxial cable.

## Characteristic impedance

The characteristic impedance of the transmission line. This parameter appears for delay-based models, and for lumped parameter models where Parameterization is By characteristic impedance and capacitance. The parameter value must be greater than zero. The default value is $50 \Omega$.

## Parameterization

This parameter appears for lumped parameter models only. Select the model parameterization method, as described in "Lumped Parameter Line Model Parameterization" on page 1-877:

## Transmission Line

- By characteristic impedance and capacitance - Specify values for the Characteristic impedance and Capacitance per unit length parameters. This is the default method.
- By inductance and capacitance - Specify values for the Inductance per unit length and Capacitance per unit length parameters.


## Inductance per unit length

The effective inductance of the transmission line per unit length. For lumped parameter models where Parameterization is By inductance and capacitance, this parameter appears instead of the Characteristic impedance parameter. The parameter value must be greater than zero. The default value is $220 \mu \mathrm{H} / \mathrm{m}$.

## Capacitance per unit length

The transmission line capacitance per unit length. This parameter appears for lumped parameter models only. The parameter value must be greater than zero. The default value is $90 \mathrm{pF} / \mathrm{m}$.

## Resistance per unit length

The total transmission line resistance (that is, the sum of the resistance for the two conducting paths) per unit length. This parameter appears for Delay-based and lossy and for lumped parameter models. The parameter value must be greater than zero. The default value is $0.3 \Omega / \mathrm{m}$.

## Insulation conductance per unit length

The conductance between the two transmission line conductors per unit length. This parameter appears for lumped parameter models only. The parameter value must be greater than, or equal to, zero. The default value is $5 \mathrm{e}-6 \mathrm{~S} / \mathrm{m}$.

## Line length

The total transmission line length. This parameter appears for Delay-based and lossy and for lumped parameter models. The parameter value must be greater than zero. The default value is 1 m .

## Transmission Line

## Number of segments

The number of model segments used to represent the transmission line. This parameter appears for Delay-based and lossy and for lumped parameter models. The parameter value must be an integer greater than, or equal to, 1 . The default value is 1 .

Ports The block has four conserving electrical ports. For a coaxial cable, the two top ports correspond to the inner conductor, and the two lower ports to the external shielding conductor.<br>References [1] Sussman-Fort, S.E. and J.C. Hantgan. "SPICE Implementation of Lossy Transmission Line and Schottky Diode Models." IEEE Transactions on Microwave Theory and Techniques. Vol. 36, No. 1, January, 1988.

## Unipolar Stepper Motor

Purpose
Library
Description


Model stepper motor with center taps on phase windings

## Rotational Actuators

The Unipolar Stepper Motor block represents a stepper motor that has center taps on the two phase windings. The winding currents and mechanical output are defined by the following equations:

$$
\begin{aligned}
& e_{A+}=-K_{m} \omega \sin \left(N_{r} \theta\right) \\
& e_{A-}=K_{m} \omega \sin \left(N_{r} \theta\right) \\
& e_{B+}=K_{m} \omega \sin \left(N_{r} \theta\right) \\
& e_{B-}=-K_{m} \omega \sin \left(N_{r} \theta\right)
\end{aligned}
$$

$$
\frac{d i_{A+}}{d t}=\left(v_{A_{+}}-R i_{A_{+}}-e_{A_{+}}\right) / L
$$

$$
\frac{d i_{A-}}{d t}=\left(v_{A_{-}}-R i_{A-}+e_{A_{-}}\right) / L
$$

$$
\frac{d i_{B+}}{d t}=\left(v_{B+}-R i_{B+}-e_{B+}\right) / L
$$

$$
\frac{d i_{B-}}{d t}=\left(v_{B-}-R i_{B-}+e_{B-}\right) / L
$$

$$
\frac{d \omega}{d t}=\left(-K_{m}\left(i_{A+}-i_{A-}-\left(e_{A+}-e_{A-}\right) / R_{m}\right) \sin \left(N_{r} \theta\right)+K_{m}\left(i_{B+}-i_{B-}-\left(e_{B+}-e_{B-}\right) / R_{m}\right) \cos \left(N_{r} \theta\right)-B \omega\right) / J
$$

## Unipolar Stepper Motor

$$
\frac{d \theta}{d t}=\omega
$$

where:

- $e_{\mathrm{A}+}$ is the back emf induced across the $\mathrm{A}+$ to A 0 half-winding.
- $e_{\mathrm{A}}$ is the back emf induced across the A - to A0 half-winding.
- $e_{\mathrm{B}+}$ is the back emf induced across the $\mathrm{B}+$ to B 0 half-winding.
- $e_{\mathrm{B}}$ is the back emf induced across the B - to B 0 half-winding.
- $i_{\mathrm{A}+}$ is the current flowing from the $\mathrm{A}+$ port to the A 0 center tap port.
- $i_{\text {A. }}$ is the current flowing from the A- port to the A0 center tap port.
- $i_{\mathrm{B}+}$ is the current flowing from the $\mathrm{B}+$ port to the B 0 center tap port.
- $i_{\mathrm{B}}$ is the current flowing from the B - port to the B 0 center tap port.
- $v_{\mathrm{A}+}$ is the voltage at the $\mathrm{A}+$ port relative to the A 0 center tap port.
- $v_{\mathrm{A}}$ is the voltage at the A- port relative to the A0 center tap port.
- $v_{\mathrm{B}+}$ is the voltage at the $\mathrm{B}+$ port relative to the B 0 center tap port.
- $v_{\mathrm{B}-}$ is the voltage at the B - port relative to the B 0 center tap port.
- $K_{\mathrm{m}}$ is the motor torque constant.
- $N_{\mathrm{r}}$ is the number of teeth on each of the two rotor poles. The Full step size parameter is $(\Pi / 2) / N_{\mathrm{r}}$.
- $R$ is the half-winding resistance. For example, it is the resistance between A+ and A0 ports.
- $L$ is the half-winding inductance. For example, it is the inductance between A+ and A0 ports.
- $R_{\mathrm{m}}$ is the magnetizing resistance.
- $B$ is the rotational damping.
- $J$ is the inertia.


## Unipolar Stepper Motor

- $\omega$ is the rotor speed.
- $\Theta$ is the rotor angle.

If the initial rotor is zero or some multiple of $(\Pi / 2) / N_{r}$, the rotor is aligned with the A-phase winding. If a positive current flows from the A+ port to the A0 center tap port, then the stepper acts to stay aligned with the A-phase. Equivalently, a positive current flowing from the A0 center tap port to the A- port also acts on the rotor to stay aligned with the A-phase.

The Unipolar Stepper Motor block produces a positive torque acting from the mechanical C to R ports for either of the following sequences. Both sequences assume the rotor initial angle is zero or some multiple of $(п / 2) / N_{r}$.

Sequence	Center taps connected to   ground	Center taps connected to   positive supply
1	Positive current from A+ to   A0	Positive current from A0 to   A-
2	Positive current from B+ to   B0	Positive current from B0 to   B-
3	Positive current from A- to   A0	Positive current from A0 to   A-
4	Positive current from B- to   B0	Positive current from B0 to   B-

## Thermal Ports

The block has five optional thermal ports, one for each of the four half-windings and one for the rotor. These ports are hidden by default. To expose the thermal ports, right-click the block in your model, and then from the context menu select Simscape block choices $>$ Show thermal port. This action displays the thermal ports on the block icon, and adds the Temperature Dependence and Thermal port tabs to the block dialog box. These tabs are described further on this reference page.

## Unipolar Stepper Motor

Use the thermal ports to simulate the effects of copper resistance and iron losses that convert electrical power to heat. For more information on using thermal ports in actuator blocks, see "Simulating Thermal Effects in Rotational and Translational Actuators".

## Basic Assumptions and Limitations

## Dialog Box and Parameters

The model is based on the following assumptions:

- This model neglects magnetic saturation effects, detent torque, and any magnetic coupling between phases.
- When you select the Start simulation from steady state check box in the Simscape Solver Configuration block, this block will not initialize an Initial rotor angle value between $-п$ and $п$.
- All four half-windings are assumed to be identical, and therefore have the same resistance temperature coefficient, alpha, and the same thermal mass.
- "Electrical Torque Tab" on page 1-886
- "Mechanical Tab" on page 1-888
- "Temperature Dependence Tab" on page 1-889
- "Thermal Port Tab" on page 1-891


## Unipolar Stepper Motor

## Electrical Torque Tab

Block Parameters: Unipolar Stepper Motor

## Unipolar Stepper Motor

This block represents the electrical and torque characteristics of a permanent magnet unipolar stepper motor.
If the initial angle is set to zero or some multiple of ( $\mathrm{pi} / 2$ )/ Nr where Nr is the number of teeth on each of the rotc poles, then the rotor is aligned with the A-phase winding, and will maintain position if a positive current flows from the $\mathrm{A}+$ to the A 0 port. If this current is replaced by a positive current flowing from the $\mathrm{B}+$ to the B 0 port, th motor shaft takes one step in the positive direction.

## Parameters

Electrical Torque	Mechanical	
Half-winding resistance:	0.55	Ohm
Half-winding inductance:	0.0015	H
Motor torque constant:	0.19	$\mathrm{~N}=\mathrm{m} / \mathrm{A}$
Magnetizing resistance:		Inf
Full step size:	1.8	Ohm

## Half-winding resistance

Half of the resistance of the A and B phase windings as measured between the $\mathrm{A}+$ and $\mathrm{A}-$, and the $\mathrm{B}+$ and $\mathrm{B}-$ ports. The default value is $0.55 \Omega$.

## Unipolar Stepper Motor

## Half-winding inductance

Half of the inductance of the $A$ and $B$ phase windings as measured between the $\mathrm{A}+$ and $\mathrm{A}-$, and the $\mathrm{B}+$ and $\mathrm{B}-$ ports. The default value is 0.0015 H .

## Motor torque constant

Motor torque constant $K_{m}$. The default value is $0.19 \mathrm{~N} * \mathrm{~m} / \mathrm{A}$.

## Magnetizing resistance

The total magnetizing resistance seen from each of the phase windings, for example across $\mathrm{A}+$ and A 0 . The value must be greater than zero. The default value is Inf, which implies that there are no iron losses.

## Full step size

Step size when changing the polarity of either the A or B phase current. The default value is $1.8^{\circ}$.

## Unipolar Stepper Motor

## Mechanical Tab

## Block Parameters: Unipolar Stepper Motor

## Unipolar Stepper Motor

This block represents the electrical and torque characteristics of a permanent magnet unipolar stepper motor.
If the initial angle is set to zero or some multiple of ( $\mathrm{pi} / 2$ )/ Nr where Nr is the number of teeth on each of the rot poles, then the rotor is aligned with the A-phase winding, and will maintain position if a positive current flows from the $A+$ to the $A 0$ port. If this current is replaced by a positive current flowing from the $B+$ to the $B 0$ port, th motor shaft takes one step in the positive direction.

## Parameters

Electrical Torque	Mechanical			
Rotor inertia:		$4.5 \mathrm{e}-5$	$\mathrm{kg} * \mathrm{~m}^{\wedge} 2$	$\checkmark$
Rotor damping:		$8 \mathrm{e}-4$	$\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$	$\checkmark$
Initial rotor speed:		0	rpm	$\checkmark$
Initial rotor angle:		0	deg	*

## Rotor inertia

Resistance of the rotor to change in motor motion. The default value is $4.5 \mathrm{e}-05 \mathrm{~kg} * \mathrm{~m}^{2}$. The value can be zero.

## Rotor damping

Energy dissipated by the rotor. The default value is $8 \mathrm{e}-04$ $\mathrm{N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

## Unipolar Stepper Motor

## Initial rotor speed

Speed of the rotor at the start of the simulation. The default value is 0 rpm .

## Initial rotor angle

Angle of the rotor at the start of the simulation. The default value is 0 rad .

## Temperature Dependence Tab

This tab appears only for blocks with exposed thermal ports. For more information, see "Thermal Ports" on page 1-884.

## Unipolar Stepper Motor

## Block Parameters: Unipolar Stepper Motor

Unipolar Stepper Motor
This block represents the electrical and torque characteristics of a permanent magnet unipolar stepper motor.
If the initial angle is set to zero or some multiple of ( $\mathrm{pi} / 2$ )/ Nr where Nr is the number of teeth on each of the rot poles, then the rotor is aligned with the A-phase winding, and will maintain position if a positive current flows fro the $\mathrm{A}+$ to the A 0 port. If this current is replaced by a positive current flowing from the $\mathrm{B}+$ to the B 0 port, the mot shaft takes one step in the positive direction.

## Parameters

Electrical Torque $\quad$ Mechanical Temperature Dependence Thermal Port

Resistance temperature coefficient:

Measurement temperature:

0.00393
25

## Resistance temperature coefficient

Parameter a in the equation defining resistance as a function of temperature, as described in "Thermal Model for Actuator Blocks". It is assumed that all windings are made of the same

## Unipolar Stepper Motor

material, and therefore have the same resistance temperature coefficient. The default value is for copper, and is $0.003931 / \mathrm{K}$.

## Measurement temperature

The temperature for which motor parameters are defined. The default value is 25 C .

## Thermal Port Tab

This tab appears only for blocks with exposed thermal ports. For more information, see "Thermal Ports" on page 1-884.

## Unipolar Stepper Motor

## Block Parameters: Unipolar Stepper Motor

Unipolar Stepper Motor
This block represents the electrical and torque characteristics of a permanent magnet unipolar stepper motor.
If the initial angle is set to zero or some multiple of ( $\mathrm{pi} / 2$ )/ Nr where Nr is the number of teeth on each of the rot poles, then the rotor is aligned with the A-phase winding, and will maintain position if a positive current flows fro the $\mathrm{A}+$ to the A 0 port. If this current is replaced by a positive current flowing from the $\mathrm{B}+$ to the B 0 port, the mot shaft takes one step in the positive direction.

## Parameters

Electrical Torque $\quad$ Mechanical $\quad$ Temperature Dependence $\quad$ Thermal Port

Half-winding thermal mass:	100	J/K	-
Half-winding initial temperatures, [T_A+ T_A- T_B+ T_B-]:	[ $\left.25 \begin{array}{llll}25 & 25 & 25 & 25\end{array}\right]$	C	$\checkmark$
Rotor thermal mass:	50	J/K	*
Rotor initial temperature:	25	C	$\checkmark$
Percentage of magnetizing resistance associated with the rotor:	90		

## Half-winding thermal mass

The thermal mass for half of either the A or B winding. The thermal mass is the energy required to raise the temperature by one degree. It is assumed that all four half-windings have the same thermal mass. The default value is $100 \mathrm{~J} / \mathrm{K}$.

## Unipolar Stepper Motor

Half-winding initial temperatures, [T_A+ T_A- T_B+ T_B-]
A 1 by 4 row vector defining the temperature of the four half-windings at the start of simulation. The default value is [ 25252525 ] C.

## Rotor thermal mass

The thermal mass of the rotor, that is, the energy required to raise the temperature of the rotor by one degree. The default value is $50 \mathrm{~J} / \mathrm{K}$.

## Rotor initial temperature

The temperature of the rotor at the start of simulation. The default value is 25 C .

Percentage of magnetizing resistance associated with the rotor The percentage of the magnetizing resistance associated with the magnetic path through the rotor. It determines how much of the iron loss heating is attributed to the rotor thermal port HR, and how much is attributed to the four winding thermal ports. The default value is $90 \%$.

## Ports The block has the following ports:

A+
Top A-phase electrical connection.
AO
A-phase center tap connection
A-
Lower A-phase electrical connection
B+
Top B-phase electrical connection.
B0
B-phase center tap connection
B-
Lower B-phase electrical connection.

## Unipolar Stepper Motor

C
Mechanical rotational conserving port.
R
Mechanical rotational conserving port.
HA+
Thermal port for winding between A+ and A0. For more information, see "Thermal Ports" on page 1-884.

HA -
Thermal port for winding between A- and A0. For more information, see "Thermal Ports" on page 1-884.

HB+
Thermal port for winding between $\mathrm{B}+$ and B 0 . For more information, see "Thermal Ports" on page 1-884.
HB-
Thermal port for winding between B- and B0. For more information, see "Thermal Ports" on page 1-884.

HR
Thermal port for rotor. For more information, see "Thermal Ports" on page 1-884.

References<br>[1] M. Bodson, J. N. Chiasson, R. T. Novotnak and R. B. Rekowski. "High-Performance Nonlinear Feedback Control of a Permanent Magnet Stepper Motor." IEEE Transactions on Control Systems Technology, Vol. 1, No. 1, March 1993.

[2] P. P. Acarnley. Stepping Motors: A Guide to Modern Theory and Practice. New York: Peregrinus, 1982.
[3] S.E. Lyshevski. Electromechanical Systems, Electric Machines, and Applied Mechatronics. CRC, 1999.

See Also Stepper Motor<br>Stepper Motor Driver

## Purpose

## Library

Description

Model electrical and torque characteristics of a universal (or series) motor

Rotational Actuators
The Universal Motor block represents the electrical and torque characteristics of a universal (or series) motor using the following equivalent circuit model.


Where:

- $R_{a}$ is the armature resistance.
- $L_{a}$ is the armature inductance.
- $R_{f}$ is the field winding resistance.
- $L_{f}$ is the field winding inductance.

When you set the Model parameterization parameter to By equivalent circuit parameters, you specify the equivalent circuit parameters for this model. The Universal Motor block computes the motor torque as follows:

1 The magnetic field in the motor induces the following back emf $v_{b}$ in the armature:

$$
v_{b}=L_{a f} i_{f} \omega
$$

where $L_{a f}$ is a constant of proportionality and $\omega$ is the angular velocity.

2 The mechanical power is equal to the power reacted by the back emf:

$$
P=v_{b} i_{f}=L_{a f} \dot{i}_{f}{ }^{2} \omega
$$

3 The motor torque is:

$$
T=P / \omega=L_{a f} i_{f}^{2}
$$

The torque-speed characteristic for the Shunt Motor block model is related to the parameters in the preceding figure. When you set the Model parameterization parameter to By DC rated power, rated speed \& maximum torque or By DC rated power, rated speed \& electrical power, the block solves for the equivalent circuit parameters as follows:

1 For the steady-state torque-speed relationship when using a DC supply, $L$ has no effect.

2 Sum the voltages around the loop:

$$
V=\left(R_{f}+R_{a}\right) i_{f}+v_{b}=\left(R_{f}+R_{a}+L_{a f} \omega\right) i_{f}
$$

3 Solve the preceding equation for $i_{f}$ and substitute this value into the equation for torque:

$$
T=L_{a f}\left(\frac{V}{R_{f}+R_{a}+L_{a f} \omega}\right)^{2}
$$

The block uses the rated speed and power to calculate the rated torque. The block uses the rated torque and rated speed values in the preceding equation plus the corresponding electrical power to determine values for $R_{f}+R_{a}$ and $L_{a f}$.

When you set the Model parameterization parameter to By AC rated power, rated speed, current \& electrical power, then the block must include the inductive terms $L_{a}$ and $L_{f}$ in the model. This requires information about the RMS rated current and voltage for the total inductance.

The block models motor inertia $J$ and damping $B$ for all values of the Model parameterization parameter. The output torque is:

$$
T_{\text {load }}=L_{a f}\left(\frac{V}{R_{f}+R_{a}+L_{a f} \omega}\right)^{2}-J \dot{\omega}-B \omega
$$

The block produces a positive torque acting from the mechanical C to $R$ ports.

## Thermal Ports

The block has two optional thermal ports, one per winding, hidden by default. To expose the thermal ports, right-click the block in your model, and then from the context menu select Simscape block choices > Show thermal port. This action displays the thermal ports on the block icon, and adds the Temperature Dependence and Thermal port tabs to the block dialog box. These tabs are described further on this reference page.

Use the thermal ports to simulate the effects of copper resistance losses that convert electrical power to heat. For more information on using

## Universal Motor

thermal ports in actuator blocks, see "Simulating Thermal Effects in Rotational and Translational Actuators".

Dialog
Box and Parameters

- "Electrical Torque Tab" on page 1-899
- "Mechanical Tab" on page 1-903
- "Temperature Dependence Tab" on page 1-904
- "Thermal Port Tab" on page 1-905


## Electrical Torque Tab

Block Parameters: Universal Motor

Universal Motor
This block represents the electrical and torque characteristics of a universal motor (also sometimes called a serieswound motor).

Motor characteristics can be defined in terms of equivalent circuit parameters R (total armature and field winding resistance), L (total armature and field winding inductance) and Laf (back-emf constant). The back emf induced in the armature is given by $\mathrm{Vb}=\operatorname{Laf} * \mathrm{I} * \mathrm{~W}$ where I is the motor current and W is the mechanical angular speed. Alternatively, the motor characteristics can be defined in terms of rated mechanical power \& speed, stall torque or electrical power, nominal DC voltage, and L. If no information is available on armature or field winding inductance, L can be set to a suitably small non-zero value when driving the motor with DC .

The block produces a positive torque acting from the mechanical C to R ports.
Parameters


## Model parameterization

Select one of the following methods for block parameterization:

- By equivalent circuit parameters - Provide electrical parameters for an equivalent circuit model of the motor.


## Universal Motor

- By DC rated power, rated speed \& maximum torque Provide DC power and speed parameters that the block converts to an equivalent circuit model of the motor. This is the default method.
- By DC rated power, rated speed \& electrical power - Provide AC power and speed parameters that the block converts to an equivalent circuit model of the motor.
- By AC rated power, rated speed, current \& electrical power - Provide AC power and speed parameters that the block converts to an equivalent circuit model of the motor.


## Total armature and field winding resistance

Total resistance of the armature and field winding. This parameter is only visible when you select By equivalent circuit parameters for the Model parameterization parameter. The default value is $132.8 \Omega$.

## Rated speed (at rated load)

Motor speed at the rated mechanical load. This parameter is only visible when you select By DC rated power, rated speed \& maximum torque, By DC rated power, rated speed \& electrical power, or By AC rated power, rated speed, current \& electrical power for the Model parameterization parameter. The default value is $6.5 e+03 \mathrm{rpm}$.

## Rated load (mechanical power)

The mechanical load for which the motor is rated to operate. This parameter is only visible when you select By DC rated power, rated speed \& maximum torque, By DC rated power, rated speed \& electrical power, or By AC rated power, rated speed, current \& electrical power for the Model parameterization parameter. The default value is 75 W .

## Rated DC supply voltage

The DC voltage at which the motor is rated to operate. This parameter is only visible when you select By DC rated power, rated speed \& maximum torque or By DC rated power, rated
speed \& electrical power for the Model parameterization parameter. The default value is 200 V .

## Electrical power in at rated load

The amount of electrical power the motor uses at the rated mechanical power. This parameter is only visible when you select By DC rated power, rated speed \& electrical power or By AC rated power, rated speed, current \& electrical power for the Model parameterization parameter. The default value is 160 W .

Maximum (starting) torque
Maximum torque the motor produces. This parameter is only visible when you select By DC rated power, rated speed \& maximum torque for the Model parameterization parameter. The default value is $0.39 \mathrm{~N} * \mathrm{~m}$.

Total armature and field winding inductance
Total inductance of the armature and field winding. If you do not have information about this inductance, set the value of this parameter to a small, nonzero number. This parameter is only visible when you select By equivalent circuit parameters, By DC rated power, rated speed \& maximum torque, or By DC rated power, rated speed \& electrical power for the Model parameterization parameter. The default value is 0.525 H .

Note You can set the Total armature and field winding inductance value to zero, but this only makes sense if you are driving the motor with a DC source.

## RMS rated voltage

RMS supply voltage when the motor operates on AC power. This parameter is only visible when you select By AC rated power, rated speed, current \& electrical power for the Model parameterization parameter. The default value is 240 V .

## Universal Motor

## RMS current at rated load

RMS current when the motor operates on AC power at the rated load. This parameter is only visible when you select By AC rated power, rated speed, current \& electrical power for the Model parameterization parameter. The default value is 0.8 A .

## AC frequency

Frequency of the AC supply voltage. This parameter is only visible when you select By AC rated power, rated speed, current \& electrical power for the Model parameterization parameter. The default value is 50 Hz .

## Mechanical Tab

## Block Parameters: Universal Motor

## Universal Motor

This block represents the electrical and torque characteristics of a universal motor (also sometimes called a serieswound motor).

Motor characteristics can be defined in terms of equivalent circuit parameters R (total armature and field winding resistance), L (total armature and field winding inductance) and Laf (back-emf constant). The back emf induced in the armature is given by $\mathrm{Vb}=\mathrm{Laf} * \mathrm{I}$ * W where I is the motor current and W is the mechanical angular speed. Alternatively, the motor characteristics can be defined in terms of rated mechanical power \& speed, stall torque or electrical power, nominal DC voltage, and L. If no information is available on armature or field winding inductance, L can be set to a suitably small non-zero value when driving the motor with DC .

The block produces a positive torque acting from the mechanical C to R ports.

## Parameters

Electrical Torque	Mechanical	
Rotor inertia:	$\boxed{2 e-4}$	$\boxed{\mathrm{~kg}^{*} \mathrm{~m}^{\wedge} 2}$
Rotor damping:	$\boxed{1 \mathrm{e}-6}$	$\boxed{\mathrm{~N}^{*} \mathrm{~m} /(\mathrm{rad} / \mathrm{s})}$
Initial rotor speed:	$\boxed{0}$	$\boxed{\mathrm{rpm}}$

## Rotor inertia

Rotor inertia. The default value is $2 \mathrm{e}-04 \mathrm{~kg}^{*} \mathrm{~m}^{2}$. The value can be zero.

## Universal Motor

## Rotor damping

Rotor damping. The default value is $1 \mathrm{e}-06 \mathrm{~N} * \mathrm{~m} /(\mathrm{rad} / \mathrm{s})$. The value can be zero.

## Initial rotor speed

Speed of the rotor at the start of the simulation. The default value is 0 rpm .

## Temperature Dependence Tab

This tab appears only for blocks with exposed thermal ports. For more information, see "Thermal Ports" on page 1-897.

Block Parameters: Universal Motor
Universal Motor
This block represents the electrical and torque characteristics of a universal motor (also sometimes called a serieswound motor).

Motor characteristics can be defined in terms of equivalent circuit parameters R (total armature and field winding resistance), L (total armature and field winding inductance) and Laf (back-emf constant). The back emf induced in the armature is given by $\mathrm{Vb}=\mathrm{Laf} * \mathrm{I} * \mathrm{~W}$ where I is the motor current and W is the mechanical angular speed. Alternatively, the motor characteristics can be defined in terms of rated mechanical power \& speed, stall torque or electrical power, nominal DC voltage, and L. If no information is available on armature or field winding inductance, L can be set to a suitably small non-zero value when driving the motor with DC.

The block produces a positive torque acting from the mechanical C to R ports.
Parameters

Electrical Torque	Mechanical	Temperature Dependence	Thermal Port
Field to armature resistance   ratio, Rf/Ra: 1    Resistance temperature   coefficients, [alpha_f alpha_a]:   Measurement temperature: $[0.003930 .00393]$ $1 / \mathrm{K}$	25	C	

## Field to armature resistance ratio, Rf/Ra

The ratio of the field to the armature resistance. This parameter is required only when showing the field and armature thermal ports. It is used to determine individual resistance values for the field and armature windings so that the thermal heat generated by the two resistors can be apportioned correctly. The default value is 1 .

## Resistance temperature coefficients, [alpha_f alpha_a]

A 1 by 2 row vector defining the coefficient $\alpha$ in the equation relating resistance to temperature, as described in "Thermal Model for Actuator Blocks". The first element corresponds to the field winding, and the second to the armature. The default value is for copper, and is [ 0.003930 .00393 ] $1 / \mathrm{K}$.

## Measurement temperature

The temperature for which motor parameters are defined. The default value is 25 C .

## Thermal Port Tab

This tab appears only for blocks with exposed thermal ports. For more information, see "Thermal Ports" on page 1-897.

## Universal Motor



## Thermal masses, [Mf Ma]

A 1 by 2 row vector defining the thermal mass for the field and armature windings. The thermal mass is the energy required to raise the temperature by one degree. The default value is [ 100 100 ] J/K.

## Initial temperatures, [Tf Ta]

A 1 by 2 row vector defining the temperature of the field and armature thermal ports at the start of simulation. The default value is [ 2525 ] C.

The block has the following ports:
$+$
Positive electrical port.

Negative electrical port.
C
Mechanical rotational conserving port.
R
Mechanical rotational conserving port.
Hf
Field winding thermal port. For more information, see "Thermal Ports" on page 1-897.

Ha
Armature winding thermal port. For more information, see "Thermal Ports" on page 1-897.

## References

See Also DC Motor, Induction Motor, Servomotor, and Shunt Motor.

## Variable Capacitor

Purpose Model linear time-varying capacitor
Library
Passive Devices
Description The Variable Capacitor block represents a linear time-varying capacitor. The block provides two options for the relationship between the current (o+c) $i$ through the capacitor and the voltage $v$ across the device when the capacitance at port C is $C$. The Equation parameter determines which of the following equations the block uses:

- $i=\frac{d C}{d t} v+C \frac{d v}{d t}$

Use the preceding equation when the capacitance is defined as the ratio of the charge $Q$ to the steady-state voltage:

$$
C(v)=\frac{Q(v)}{v}
$$

- $i=C \frac{d v}{d t}$

Use the preceding equation when the capacitance is defined as the local gradient of the charge-voltage curve for a given voltage:

$$
C(v)=\frac{d Q(v)}{d v}
$$

The block includes a resistor in series with the variable capacitor. You can use this resistor to represent the total ohmic connection resistance of the capacitor. You may need to use this resistor to prevent numerical issues for some circuit topologies, such as where a Variable Capacitor block is connected in parallel with another capacitor block that does not have a series resistance.

## Variable Capacitor

## Dialog Box and Parameters



## Equation

Select one of the following options for block capacitance:

- $I=C * d V / d t+d C / d t * V$ - This equation assumes the capacitance is defined as the ratio of the charge to the steady-state voltage. This option is the default.
- $I=C * d V / d t$ - This equation assumes the capacitance is defined as the local gradient of the charge-voltage curve for a given voltage.


## Minimum capacitance $\mathbf{C}>0$

The lower limit on the value of the signal at port C. This limit prevents the signal from reaching a value that has no physical meaning. The default value is 1e-09 F.

## Series resistance

The value of the resistance placed in series with the variable capacitor. The default value is $1 \mathrm{e}-06 \Omega$.

## Initial charge

The charge at the start of the simulation. This parameter is only visible when you select I = C*dV/dt + dC/dt*V for the Equation parameter. The default value is 0 c.

## Variable Capacitor

## Initial voltage

The output voltage at the start of the simulation. This parameter is only visible when you select I = C*dV/dt for the Equation parameter. The default value is 0 V .

The block has the following ports:
C
Capacitance. C must be finite and greater than zero.
$+$
Positive electrical port.

Negative electrical port.

See Also Variable Inductor, Simscape Variable Resistor

## Variable Inductor

## Purpose

Model linear time-varying inductor

## Library

Description
Passive Devices

The Variable Inductor block represents a linear time-varying inductor. The block provides two options for the relationship between the voltage $v$ across the device and the current through the inductor $i$ when the inductance at port L is $L$. The Equation parameter determines which of the following equations the block uses:

- $v=\frac{d L}{d t} i+L \frac{d i}{d t}$

Use the preceding equation when the inductance is defined as the ratio of the magnetic flux $\Phi$ to the steady-state current:

$$
L(i)=\frac{\Phi(i)}{i}
$$

- $v=L \frac{d i}{d t}$

Use the preceding equation when the inductance is defined as the local gradient of the flux-current curve for a given current:

$$
L(i)=\frac{d \Phi(i)}{d i}
$$

The block includes a conductance in parallel with the variable inductor. You can use the conductor to represent the total insulation conductance of the inductor. You may need to use the conductor to prevent numerical issues for some circuit topologies, such as where a Variable Inductor block is connected in series with another inductor block that does not have a parallel conductance.

## Variable Inductor

## Dialog Box and Parameters

## Equation

Select one of the following options for block inductance:

- $V=L * d I / d t+d L / d t * I-$ This equation assumes the inductance is defined as the ratio of the magnetic flux to the steady-state current. This option is the default.
- $\mathrm{V}=\mathrm{L} * \mathrm{dI} / \mathrm{dt}$ - This equation assumes the inductance is defined as the local gradient of the flux-current curve for a given current.


## Minimum inductance $L>0$

The lower limit on the value of the signal at port L. This limit prevents the signal from reaching a value that has no physical meaning. The default value is $1 \mathrm{e}-06 \mathrm{H}$.

## Parallel conductance

The value of the conductance placed in parallel with the variable inductor. The default value is $1 \mathrm{e}-091 / \Omega$.

## Initial magnetic flux

The magnetic flux at the start of the simulation. This parameter is only visible when you select $V=L * d I / d t+d L / d t * I$ for the Equation parameter. The default value is 0 Wb .

## Initial current

The output current at the start of the simulation. This parameter is only visible when you select $V=L * d I / d t$ for the Equation parameter. The default value is 0 A .

## Ports The block has the following ports:

L
Inductance. L must be finite and greater than zero.
$+$
Positive electrical port.

Negative electrical port.
See Also
Variable Capacitor, Simscape Variable Resistor

## Voltage-Controlled Oscillator

Purpose
Library
Description


Behavioral model of voltage-controlled oscillator

Integrated Circuits
The Voltage-Controlled Oscillator block provides a behavioral model of a voltage-controlled oscillator (VCO). The output voltage is defined by the following equations:

$$
\begin{aligned}
& v_{\lim }= \begin{cases}v_{\min } & \text { for } v_{\text {in }}<v_{m \text { in }} \\
v_{\text {in }} & \text { for } v_{m \text { in }} \leq v_{\text {in }} \leq v_{\max } \\
v_{\max } & \text { for } v_{\text {in }}>v_{\max }\end{cases} \\
& \dot{\Phi}=2 \pi F\left(v_{\lim }\right) \\
& v_{\text {out }}=A \sin \left(2 \pi f_{\text {nom }} t+\Phi\right)-i_{\text {out }} R_{\text {out }}
\end{aligned}
$$

where:

- $v_{\text {in }}$ is the voltage applied across the $1+$ and 1 - ports.
- $v_{\text {out }}$ is the voltage across the $2+$ and 2 - ports.
- $f_{\text {nom }}$ is the oscillator frequency when the input control voltage is $v_{\text {nom }}$.
- $F$ is a linear function of $v_{\text {lim }}$ or a lookup table function of $v_{\text {lim }}$.
- $A$ is the output voltage peak amplitude.
- $t$ is simulation time.
- $i_{\text {out }}$ is the output current.
- $R_{\text {out }}$ is the output resistance.

If you choose Linear for the Frequency dependence on input voltage parameter, then the function $F$ is given by:

$$
F=f_{\text {nom }}+k\left(v_{\text {lim }}-v_{\text {nom }}\right)
$$

where $k$ is the rate of change of frequency with input voltage.
If you choose Tabulated for the Frequency dependence on input voltage parameter, then the function $F$ is defined by the vectors of input voltages and corresponding output frequency deviations from nominal that you supply. The values for $v_{\text {min }}$ and $v_{\text {max }}$ are the first and the last values of the input voltage vector.
You can model the time delay between a change in the input control voltage and the oscillator frequency. Do this by modeling a first-order dynamic between $v_{\mathrm{lim}}$ and the value passed to the function $F$.

## Voltage-Controlled Oscillator

## Dialog Frequency Tab <br> Box and Parameters



## Frequency dependence on input voltage

Select one of the following methods for block parameterization:

- Linear - Define a linear function by specifying the rate of change of frequency with input voltage. This is the default option.
- Tabulated - Provide the vectors of input voltages and corresponding output frequency deviations from nominal. The


## Voltage-Controlled Oscillator

block determines the frequency deviation by table lookup based on these values.

## Nominal frequency

The oscillator frequency when the input control voltage is at the nominal value. The default value is 1000 Hz .

## Input voltage corresponding to nominal frequency

The input voltage corresponding to the oscillator nominal frequency. This parameter is visible only if you select Linear for the Frequency dependence on input voltage parameter. The default value is 0.5 V .

## Rate of change of frequency with input voltage

The linear coefficient defining the rate of change of frequency depending on input voltage. This parameter is visible only if you select Linear for the Frequency dependence on input voltage parameter. The default value is $0 \mathrm{~Hz} / \mathrm{V}$.

## Minimum input voltage

The minimum input voltage that affects VCO frequency. This parameter is visible only if you select Linear for the Frequency dependence on input voltage parameter. The default value is 0 V .

## Maximum input voltage

The maximum input voltage that affects VCO frequency. This parameter is visible only if you select Linear for the Frequency dependence on input voltage parameter. The default value is 1 V .

## Input voltage vector

The vector of voltages for the tabulated VCO frequency. This parameter is visible only if you select Tabulated for the Frequency dependence on input voltage parameter. The default value is $\left[\begin{array}{lllll}0 & 0.2 & 0.4 & 0.6 & 0.8 \\ 1\end{array}\right] \mathrm{V}$.

## Frequency deviation from nominal

The corresponding vector of VCO frequencies relative to the nominal frequency. This parameter is visible only if you select

## Voltage-Controlled Oscillator

Tabulated for the Frequency dependence on input voltage parameter. The default value is $\left[\begin{array}{llllll}-1000 & -329 & -51 & 162 & 342 & 500\end{array}\right]$ Hz.

## Electrical Characteristics Tab



## Output voltage peak amplitude

The peak amplitude of the voltage across the $2+$ and $2-$ terminals.
The default value is 1 V .

## Input resistance

The resistance seen at the 1+ and 1 - terminals. The default value is Inf Ohm.

## Voltage-Controlled Oscillator

## Output resistance

The value of the series output resistance. The default value is 0 Ohm.

## Dynamics Tab



## Dynamics

Select one of the following methods for specifying dynamics:

- No dynamics - Do not model the time delay between a change in the input control voltage and the oscillator frequency. This is the default option.


## Voltage-Controlled Oscillator

- Model frequency tracking dynamics - Model a first order dynamic between the input control voltage and the oscillator frequency.


## Frequency tracking time constant

Time constant for the first-order filter that delays the measured input control voltage, to model the lag between a change in VCO demanded frequency and the resulting VCO frequency. This parameter is visible only if you select Model frequency tracking dynamics for the Dynamics parameter. The default value is 0.001 s .

## Initial frequency

The initial VCO output frequency. This parameter is visible only if you select Model frequency tracking dynamics for the Dynamics parameter. The default value is 1000 Hz .

Ports The block has the following ports:
1+
Positive input voltage
1 -
Negative input voltage
2+
Positive output voltage
2 -
Negative output voltage

## Purpose

Model voltage-controlled switch with hysteresis

## Library

Description


Basic
Assumptions and Limitations

The block output resistance model is discontinuous during switching. The discontinuity might cause numerical issues. Try the following actions to resolve the issues:

- Set the On resistance, RON and Off resistance, ROFF parameter values to keep the ratio RON/ROFF as small as possible, and less than $1 \mathrm{e}+12$.
- Increase the Hysteresis voltage, VH parameter value to reduce switch chatter.
- Decrease the Max step size parameter value (in the Configuration Parameters block dialog box).


## Voltage-Controlled Switch

Note This increases the simulation time.

Block Parameters: Voltage-Controlled Switch					区
- Voltage-Controlled Switch   The block represents a voltage controlled switch. If the controlling voltage is greater than the sum of the threshold voltage and the hysteresis voltage the switch is closed and its resistance value is RON. If the controlling voltage is less than the difference of the threshold voltage minus the hysteresis voltage then the switch is open and its resistance value is ROFF. If the controlling voltage value is within the crossover region, the switch position is unchanged.					
Parameters					
Threshold voltage, VT:	0				$\nabla$
Hysteresis voltage, VH :	0				$\checkmark$
On resistance, RON:	1			Ohm	$\checkmark$
Off resistance, ROFF:	1e+12			Ohm	$\checkmark$
Initial switch state:	On			$\checkmark$	
		OK	Cancel	Help	Apply

## Threshold voltage, VT

The voltage above which the block interprets the controlling voltage as HIGH. The default value is 0 V .

Note The controlling voltage must differ from the threshold voltage by at least the Hysteresis voltage, VH parameter value to change the state of the switch.

## Hysteresis voltage, VH

The amount by which the controlling voltage must exceed or fall below the Threshold voltage, VT parameter value to change the state of the switch. The default value is 0 V .

## On resistance, RON

The resistance of the switch when it is closed. The default value is $1 \Omega$.

## Off resistance, ROFF

The resistance of the switch when it is open. The default value is $1 \mathrm{e}+12 \Omega$.

## Initial switch state

Select one of the following options for the state of the switch at the start of the simulation:

- On - The switch is initially closed and its resistance value is equal to the On resistance, RON parameter value. This is the default option.
- Off - The switch is initially open and its resistance value is equal to the Off resistance, ROFF parameter value.


## Ports <br> The block has the following ports:

$+$
Positive electrical input and output ports.

Negative electrical input and output ports.

Purpose Simulate voltage source with DC, AC, and noise components

## Library

Sources
Description The Voltage Source block implements a voltage source with DC, AC, and noise components. The voltage across the + and - terminals is given by:

$$
v=v_{D C}+v_{A C} \sin (2 \pi f t+\phi)+v_{N}
$$

where:

- $v_{\mathrm{DC}}$ is the steady-state DC voltage component.
- $v_{\mathrm{AC}}$ is the amplitude of the AC voltage component.
- $f$ is the frequency of the AC component.
- $\varphi$ is the phase offset of the AC component.
- $v_{\mathrm{N}}$ is the noise voltage.

You can configure your source as DC-only, AC-only, or a combination of both. By default, both AC and DC components are set to 0 . Define the AC/DC voltage by specifying nonzero parameter values after placing the block in your model.
The noise component is also optional. If you set the Noise mode parameter to Enabled, then the added noise voltage is given by:

$$
v_{N}=\sqrt{P_{v} / 2} \frac{N(0,1)}{\sqrt{h}}
$$

where:

- $P_{\mathrm{v}}$ is the single-sided noise power spectral density for a 1 ohm load, in $V^{\wedge} 2 / \mathrm{Hz}$.
- $N$ is a Gaussian random number with zero mean and standard deviation of one.
- $h$ is the sampling interval.

By default, the Noise mode parameter is set to Disabled, and the voltage source generates no thermal noise.

## Noise Options

The block generates Gaussian noise by using the Random Number source in the Simscape Foundation library. You can control the random number seed by setting the Repeatability parameter:

- Not repeatable - Every time you simulate your model, the block resets the random seed using the MATLAB random number generator:

```
seed = randi(2^32-1);
```

- Repeatable - The block uses a hidden parameter, called auto_seed, to always start the simulation with the same random number. The value of auto_seed is set whenever you copy the Resistor block from the block library to the model, or when you make a new copy of the Resistor block from an existing one in a model. The block sets the value using the MATLAB random number generator command shown above.
- Specify seed - If you select this option, the additional Seed parameter lets you directly specify the random number seed value.


## Basic Assumptions and Limitations

Simulating with noise enabled slows down simulation. Choose the sample time ( $h$ ) so that noise is generated only at frequencies of interest, and not higher.

## Voltage Source

## Dialog DC \& AC Components Tab <br> Box and Parameters

```
Block Parameters: Voltage Source
Voltage Source
This block models a voltage source with DC, AC and noise components. The output voltage is defined by v = v_dc
+v_ac** }\operatorname{sin}(\mp@subsup{2}{}{*}p\mp@subsup{i}{}{*}\mp@subsup{f}{}{*}t+phi)+v_n where v_dc is the DC amplitude, v_ac is the peak AC amplitude, f is th
frequency, phi is the phase shift and v_n is the noise voltage.
Parameters
DC & AC Components Noise
 DC voltage:
 AC voltage peak amplitude:
 AC voltage phase shift:
 AC voltage frequency:
 |0 nncerce
OK
Cancel
Apply
```

DC voltage
The DC component of the output voltage. The default value is 0 V. Enter a nonzero value to add a DC component to the voltage source.

## AC voltage peak amplitude

Amplitude of the AC component of the output voltage. The default value is 0 V . Enter a nonzero value to add an AC component to the voltage source.

AC voltage phase shift
Phase offset of the AC component of the output voltage. The default value is 0 degrees.

## AC voltage frequency

Frequency of the AC component of the output voltage. The default value is 60 Hz .

## Noise Tab



## Noise mode

Select the noise option:

- Disabled - No noise is produced by the voltage source. This is the default.
- Enabled - The voltage source generates thermal noise, and the associated parameters become visible on the Noise tab.


## Power spectral density

The single-sided spectrum noise power. Strictly-speaking, this is a density function for the square of the voltage, commonly

## Voltage Source

thought of as a power into a 1 ohm load, and therefore the units are $\mathrm{V}^{\wedge} 2 / \mathrm{Hz}$. To avoid this unit ambiguity, some datasheets quote noise voltage as a noise density with units of $\mathrm{V} / \sqrt{ } \mathrm{Hz}$. In this case, you should enter the square of the noise density quoted in the datasheet as the parameter value. The default value is $0 \mathrm{~V}^{\wedge} 2 / \mathrm{Hz}$.

## Sample time

Defines the rate at which the noise source is sampled. Choose it to reflect the frequencies of interest in your model. Making the sample time too small will unnecessarily slow down your simulation. The default value is $1 \mathrm{e}-3 \mathrm{~s}$.

## Repeatability

Select the noise control option:

- Not repeatable - The random sequence used for noise generation is not repeatable. This is the default.
- Repeatable - The random sequence used for noise generation is repeatable, with a system-generated seed.
- Specify seed - The random sequence used for noise generation is repeatable, and you control the seed by using the Seed parameter.


## Seed

Random number seed used by the noise random number generator. This parameter is visible only if you select Specify seed for the Repeatability parameter. The default value is 0 .

Ports
The block has the following ports:
$+$
Positive electrical port.

Negative electrical port.
See Also Current Source, Resistor.

## A

Accelerometer block 1-2

## B

Band-Limited Op-Amp block 1-7

## C

CMOS AND block 1-11
CMOS Buffer block 1-19
CMOS NAND block 1-27
CMOS NOR block 1-35
CMOS NOT block 1-43
CMOS OR block 1-51
CMOS XOR block 1-59
Comparator block 1-67
Controlled PWM Voltage block 1-72
Crystal block 1-79
Current Source block 1-88
Current-Controlled Switch block 1-85

## D

DC Current Source block 1-93
DC Motor block 1-95
DC Voltage Source block 1-105
DC-DC Converter block 1-106
Diode block
Diode 1-115
DPDT Switch block 1-142
DPST Switch block 1-146

## E

Exponential Current Source block 1-150
Exponential Voltage Source block 1-153

## F

FEM-Parameterized Linear Actuator block 1-156

FEM-Parameterized Rotary Actuator block 1-165
Finite-Gain Op-Amp block 1-174
Fully Differential Op-Amp block 1-177
Fuse block 1-186

## G

Generic Battery block 1-188
Generic Linear Actuator block 1-192
Generic Rotary Actuator block 1-198
Gyro block 1-204

## H

H-Bridge block 1-208

## I

Incandescent Lamp block 1-220
Incremental Shaft Encoder block 1-227
Induction Motor block 1-230

## L

Light-Emitting Diode block 1-246

## M

Multiplier block 1-261

## N

N-Channel IGBT block 1-267
N-Channel JFET block 1-285
N -Channel MOSFET block 1-302
Negative Supply Rail block 1-317
Nonlinear Inductor block 1-319
Nonlinear Transformer block 1-330
NPN Bipolar Transistor block 1-345

## 0

Operational Transconductance Amplifier block 1-361
Optocoupler block 1-371

## P

P-Channel JFET block 1-383
P-Channel MOSFET block 1-400
Photodiode block 1-425
Piezo Linear Motor block 1-442
Piezo Rotary Motor block 1-451
Piezo Stack block 1-461
PNP Bipolar Transistor block 1-470
Polynomial Current-Controlled Current Source block 1-415
Polynomial Current-Controlled Voltage Source block 1-420
Polynomial Voltage-Controlled Current Source block 1-534
Polynomial Voltage-Controlled Voltage Source block 1-539
Positive Supply Rail block 1-486
Potentiometer block 1-488
Power Sensor block 1-492
Pressure Transducer block 1-495
Proximity Sensor block 1-499
PS Sensor block 1-503
PTC Thermistor block 1-507
Pulse Current Source block 1-513
Pulse Voltage Source block 1-517
Push-Pull Output block 1-521
PWL Current Source block 1-544
PWL Voltage Source block 1-548

## R

Relay block 1-551
Resistor block 1-554
Resolver block 1-559

## S

S-R Latch block 1-567
Servomotor block 1-575
SFFM Current Source block 1-584
SFFM Voltage Source block 1-587
Shunt Motor block 1-590
Sinusoidal Current Source block 1-601
Sinusoidal Voltage Source block 1-604
Solar Cell block 1-607
Solenoid block 1-621
SPDT Switch block 1-628
SPICE Diode block 1-632
SPICE Environment Parameters block 1-646
SPICE NJFET block 1-648
SPICE NMOS block 1-664
SPICE NPN block 1-704
SPICE PJFET block 1-730
SPICE PMOS block 1-746
SPICE PNP block 1-785
SPICE Resistor block 1-812
SPST Switch block 1-818
Stepper Motor block 1-822
Stepper Motor Driver block 1-834
Strain Gauge block 1-837

## T

Thermal Resistor block 1-839
Thermistor block 1-843
Thermocouple block 1-848
Three-Winding Mutual Inductor block 1-853
Thyristor block 1-857
Timer block 1-869
Transmission Line block 1-875
Two-Input Polynomial Current-Controlled Current Source block 1-418
Two-Input Polynomial Current-Controlled Voltage Source block 1-423
Two-Input Polynomial Voltage-Controlled Current Source block 1-537

Two-Input Polynomial Voltage-Controlled
Voltage Source block 1-542

## U

Unipolar Stepper Motor block 1-882
Universal Motor block 1-895

## v

Variable Capacitor block 1-908
Variable Inductor block 1-911
Voltage Source block 1-924
Voltage-Controlled Oscillator block 1-914
Voltage-Controlled Switch block 1-921


[^0]:    Basic
    The model is based on the following assumptions:
    Assumptions and Limitations

    - The NPN block does not support noise analysis.
    - The NPN block applies initial conditions across junction capacitors and not across the block ports.

